

Phone Manager

API Reference

MARCH 2017

DOCUMENT RELEASE 5.0

API REFERENCE

API Reference

Page 1

Table of Contents

1. Notice 2

2. Introduction 3

3. Microsoft .Net Framework DLL 4

3.1. Getting Started 4-5

3.2. Deployment 5

3.3. Upgrading from v3.0 5-6

4. Microsoft .Net Framework WCF 7

4.1. Getting Started 7-8

5. Command Line Executable 9

6. COM Component 10

6.1. Getting Started 10-11

7. Macro Scripting (VBScript) 12

7.1. Getting Started 12

8. TAPI (1st Party) 13

9. Contact Imports 14

10. Highlight and Dial 15

11. URI Schemes 16

MiVoice Office Phone Manager 5.0

Page 2

NOTICE

The information contained in this document is believed to be accurate in all respects but is not warranted by Mitel Networks™
Corporation (MITEL®). The information is subject to change without notice and should not be construed in any way as a

commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and subsidiaries assume no responsibility for
any errors or omissions in this document. Revisions of this document or new editions of it may be issued to incorporate such
changes.

No part of this document can be reproduced or transmitted in any form or by any means - electronic or mechanical - for any
purpose without written permission from Mitel Networks Corporation.

TRADEMARKS

Mitel and MiTAI are trademarks of Mitel Networks Corporation.

Windows and Microsoft are trademarks of Microsoft Corporation.

Other product names mentioned in this document may be trademarks of their respective companies and are hereby
acknowledged.

Mitel Phone Manager API Reference
Release 5.0 - March, 2017

®,™ Trademark of Mitel Networks Corporation
© Copyright 2017 Mitel Networks Corporation All rights reserved

API Reference

Page 3

2 Introduction

Phone Manager allows for control and integration of the associated extension through the use of the Phone Manager API.
There are several different components available including and these components can then be embedded within 3rd party
applications, web pages etc. to control the extension and receive events associated with the extension.

A Professional license or higher is required to use some parts of the API

Each of the integration component options has different application requirements and restrictions depending on the scenario
that they will be integrated into.

Component

Commands

Events

Require Phone Manager to be
running?

Requires

Professional
License?

Microsoft .Net Framework DLL

Microsoft .Net Framework WCF

COM Component

Command Line Executable

Macro Scripting (VBScript)

TAPI (1st Party)

Contact Imports

Highlight and Dial

URI Schemes

MiVoice Office Phone Manager 5.0

Page 4

3 Microsoft .Net Framework DLL

The .Net DLL is a Microsoft .Net Framework v4.0 assembly that can be used within a .Net development environment, for
example VB.Net and C#. This is designed to replace the Phone Manager client as it does not require Phone Manager to be
running on each user's desktop - but they can both be running at the same time. The 3rd party application manages the

connection and receives all the events that happen on the extension and has access to call control features.

3.1 Getting Started

The .Net DLL assembly files are installed within the Phone Manager installation folder and so Phone Manager needs to be

installed as this contains all the files that are required.

The following assemblies should be referenced from within your project:

Xarios.PhoneManager.dll

Xarios.PhoneManager.Types.dll

Xarios.CallRecorder.Common.dll

Xarios.CallRecorder.WCF.Types.dll

There are other assemblies that will need to be located in the same folder as the application executable, see

the Deployment section for details.

The target framework for the project needs to be set to .Net Framework 4 or higher and the platform needs to

be set to x86.

See the "Phone Manager API Reference.chm" for more details.

Phone Manager requires that a session is created to the Communication Service before a CTI connection can be made. To
create a session the User must have a valid account on the Communication Service that has the Phone Manager role and has
at least a Professional license assigned. This license will allow one additional API connection for each User, i.e. if you run the

full Phone Manager client AND an application using the .Net DLL then only one license will be consumed.

To create a session you need to provide:

Discovery Server: This is the IP address or hostname of the Communication Server

Client Credential Type: What authentication mechanism is used to validate the User. This is either Windows or Basic

authentication.

Username, Password, Domain: If provided then these will override the details of the current logged in User.

The C# code shows a how to create a session using Windows authentication.

PhoneManagerSession session = new PhoneManagerSession("cs_server");

session.SessionChanged += phoneSession_SessionChanged;

session.CreateSession();

The C# code shows a how to create a session using Basic authentication. When using Basic authentication then the

clientUsername and clientPassword field are required. (Leave the clientDomain blank).

PhoneManagerSession session = new PhoneManagerSession("cs_server",

HttpClientCredentialType.Basic, "myusername", "mypassword", "");

session.SessionChanged += phoneSession_SessionChanged;

session.CreateSession();

API Reference

Page 5

The session.CreateSession method will return if the session has been created or throw an exception with a reason if this

fails. The SessionChanged event

Once the session has been created then the CTI connection can be established to provide access to the methods and events
from the PBX. An extension number is required to create the connection . The User on the Communication Server can have
extensions associated with the account and these can be used or you could prompt the User for the extension to use.

PhoneManagerCTL phoneManager = new PhoneManagerCTL(); phoneManager.Initialised +=

phoneManager_Initialised; phoneManager.ConnectionFailed +=

phoneManager_ConnectionFailed; phoneManager.Initialise(session.SessionID,

extension, session.Host, session.Port, session.UserID);

The Initialise method will return immediately but the application then needs to wait for the Initialised event to be

raised as this indicates that a successful connection has been established. If the connection fails then a ConnectionFailed

event will be raised with a message to indicate the reason why.

3.2 Deployment

The requirements for installing the full Phone Manager client apply when deploying the .Net DLL. See the Phone Manager user
guide for details.

Applications that use the .Net DLL will need to deploy several assemblies to ensure that it can function correctly. The Phone

Manager client does not have to be installed but it can and be run side by side with the application.

These assemblies will need to be located in the same folder as the application executable.

Assembly Name

Xarios.PhoneManager.dll

Xarios.PhoneManager.Types.dll

Xarios.OAIConnection.dll

Xarios.CallRecorder.WCF.Types.dll

Xarios.CallRecorder.Common.dll

Xarios.Collections.dll

Xarios.Strings.dll

Xarios.Logging.dll

NLog.dll

The assemblies are backwards compatible within the same major.minor release. The file versions will change for each release

but the assembly versions will only change with each major.minor version release. For example, if the application has used the

assemblies from v4.0.2900:

File Version Compatible

v4.0.2901.1 Yes

v4.1.1001.1 No - requires re compilation with the latest assemblies or use of assembly redirection

v5.0.1001.1 No - requires re compilation with the latest assemblies or use of assembly redirection

MiVoice Office Phone Manager 5.0

Page 6

3.3 Upgrading from v3.0

If any integration has been performed using previous versions of Phone Manager using the .Net DLL then they can be updated
to support the latest API. This will require code changes and recompilation against the current assemblies in order to work.

The major change from previous versions is that a connection needs to be authenticated by creating a Session before the CTI

connection can be made. The Getting Started section details how the authentication change works with code examples to help.

The CTI related call control and event structure (using the PhoneManagerCTL class) has remained the same and should
require very little, if any, changes to be made to the application.

API Reference

Page 7

4 Microsoft .Net Framework WCF

This is a local WCF service hosted on a Net.TCP named pipe connection that connects to the Phone Manager client running for
the current User. This is not designed to replace the Phone Manager client but to enable simple commands to be sent and

events to be received without having to implement the full Microsoft .Net Framework DLL but does require the Phone Manager

client to be running for the User.

4.1 Getting Started

The application needs to establish a named pipe connection to the Phone Manager client. When Phone Manager starts it

creates the named pipe connection on this extension.

net.pipe://localhost/CTI_{Username}

Where {Username} is the name of the user currently logged into the computer running Phone Manager.

The following example shows how to do this from a C# application.

The sample makes use of the MIcrosoft assembly System.ServiceModel.ChannelFactory (http://msdn.microsoft.com/en-

us/library/system.servicemodel.channelfactory%28v=vs.100%29.aspx), so this needs adding as a reference to the project

and adding in the using area.

References

using System.ServiceModel;

The WCF uses a ServiceContract so this need to be configured as an interface in the project. For each method that is

going to be used the required interface OperationContract needs to be included. The interface can either be declared

inside the application or referenced using the Xarios.PhoneManager.ClientWCFService.ICTIInterface. See the

"Phone Manager API Reference.chm" for more details.

Call Control

[ServiceContract]

interface ICTIService

{

[OperationContract]

short MakeCall(string destination, string accountCode);

[OperationContract]

short AnswerCall(short callIndex);

[OperationContract]

short ClearCall(short callIndex);

[OperationContract]

short HoldCall(short callIndex);

[OperationContract]

short RetrieveCall(short callIndex);

[OperationContract]

short TransferCall(short callIndex, string destination);

[OperationContract]

short AnnouncedTransferCall(short callIndex, short heldcallindex);

}

To make a call, create a connection to the WCF service and call the MakeCall method.

http://msdn.microsoft.com/en-us/library/system.servicemodel.channelfactory(v%3Dvs.100).aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channelfactory(v%3Dvs.100).aspx
http://msdn.microsoft.com/en-us/library/system.servicemodel.channelfactory(v%3Dvs.100).aspx

MiVoice Office Phone Manager 5.0

Page 8

Call Control Example

ChannelFactory<ICTIService> pipeFactory = new DuplexChannelFactory<ICTIService>(this,

new NetNamedPipeBinding(), new

extensionAddress(string.Format("net.pipe://localhost/CTI_{0}",

Environment.UserName)));

ICTIService cti = pipeFactory.CreateChannel();

short result = cti.MakeCall("08453736880", "");

pipeFactory.Close();

Telephony events can be subscribed to enable actions to be performed when the associated extension rings for example. To

be able to receive the events the application needs be implement

the Xarios.PhoneManager.ClientWCFService.ICTIClient interface and call the RegisterForEvents method.

Event Subscription

public class PhoneManagerExample : ICTIClient

{

ChannelFactory<ICTIService> pipeFactory;

ICTIService cti;

public PhoneManagerExample()

{

pipeFactory = new DuplexChannelFactory<ICTIService>(this, new

NetNamedPipeBinding(), new

extensionAddress(string.Format("net.pipe://localhost/CTI_{0}",

Environment.UserName)));

cti = pipeFactory.CreateChannel();

if (cti == null) throw new Exception("Unable to connect to Phone Manager");

cti.RegisterForEvents();

}

#region ICTIClient Members

public void CallOffHook(CTICallDetails callInfo) {}

public void CallRinging(CTICallDetails callInfo) {}

public void CallAnswered(CTICallDetails callInfo) {}

public void CallCleared(CTICallDetails callInfo) {}

public void CallHeld(CTICallDetails callInfo) {}

public void CallRetrieved(CTICallDetails callInfo) {}

public void CallTransferred(CTICallDetails callInfo) {}

public void AgentStateChanged(CTIAgentStateDetails agentStateInfo) {}

public void Connected() {}

public void Disconnected(){}

#endregion

}

API Reference

Page 9

5 Command Line Executable

The Phone Manager executable enables some call control actions to be performed by calling this from a command line. Some
3rd party application support integration via the use of this method. The executable is in the installation folder where Phone
Manager is installed and called PhoneManager.Client.exe.

For example, to make a call to 08453736880 from the command line: PhoneManager.Client.exe MC:08453736880.

See the Phone Manager User Guide for more details.

MiVoice Office Phone Manager 5.0

Page 10

6 COM Component

This is a COM component that connects to the Phone Manager client running for the current User. This is not designed to

replace the Phone Manager client but to enable simple commands to be sent and events received without having to implement
the full Microsoft .Net Framework DLL but does require the Phone Manager client to be running for the User.

This is a wrapper around the Microsoft .Net Framework WCF API with both supporting the same set of commands and events
to provide integration into non .Net environments.

6.1 Getting Started

The application needs to create an instance of the Phone Manager COM component. The class ID and prog ID values that can
be used are shown below:

Prog ID: PhoneManager.PhoneManagerCOM

Class ID: {A257A42C-CB00-411C-BB8F-51192DA00004}

HTML & Javascript

<html>

<head>

<title>Phone Manager API Example - COM</title>

<object id="phoneManager" name="phoneManager" classid="clsid:A257A42C-CB00-

411C-BB8F-51192DA00004"></object>

<script language="javascript" type="text/javascript">

function appendText(txt) {

myTextBox.value = myTextBox.value + txt;

}

function phoneManager_onunload() {

phoneManager.Dispose();

}

function butMakeCall_click() {

appendText("Making call to " + txtNumber.value);

appendText("\r\n");

var returnCode = phoneManager.MakeCall(txtNumber.value);

var msg = "myComComponent.HelloWorld returned " + returnCode;

}

</script>

</head>

<body onunload="phoneManager_onunload();">

<h1>Phone Manager API Example - COM</h1>

<table>

<tr>

<td>

<button id="butMakeCall" onclick="butMakeCall_click();">Make

Call</button>

<label>Number</label>

<textarea id="txtNumber" rows="1" cols="16"></textarea>

</td>

</tr>

<tr>

API Reference

Page 11

<td>

<textarea id="myTextBox" rows="10" cols="80"></textarea>

</td>

</tr>

</table>

<script for="phoneManager" event="CallOffHookEvent(callIndex, outsideNumber)"

language="javascript">

function phoneManager::CallOffHookEvent(callIndex, outsideNumber) {

appendText("CallOffHookEvent : " + callIndex + "\r\n");

}

</script>

<script for="phoneManager" event="CallRingingEvent(callIndex, outsideNumber)"

language="javascript">

function phoneManager::CallRingingEvent(callIndex, outsideNumber) {

appendText("CallRingingEvent : " + callIndex + "\r\n");

}

</script>

<script for="phoneManager" event="CallAnsweredEvent(callIndex,

outsideNumber)" language="javascript">

function phoneManager::CallAnsweredEvent(callIndex, outsideNumber) {

appendText("CallAnsweredEvent : " + callIndex + "\r\n");

}

</script>

<script for="phoneManager" event="CallClearedEvent(callIndex, outsideNumber)"

language="javascript">

function phoneManager::CallClearedEvent(callIndex, outsideNumber) {

appendText("CallClearedEvent : " + callIndex + "\r\n");

}

</script>

</body>

</html>

MiVoice Office Phone Manager 5.0

Page 12

7 Macro Scripting (VBScript)

Phone Manager has a macro engine built into the client that enables VBScript macros to be written and triggered on call and
other events. Call information can be used within the macros to provide information for integration.

For example this VBScript example will display a message box and display the caller id:

Example

MsgBox "Call from " & PhoneControl.CLI

7.1 Getting Started

The macros are built using the VBScript scripting language, for a detailed reference guide see (http://msdn.microsoft.com/en-
us/library/d1wf56tt%28v=vs.84%29.aspx). From within the VBScript Phone Manager provides the PhoneControl object that

allows access to the telephony specific actions and information.

http://msdn.microsoft.com/en-us/library/d1wf56tt(v%3Dvs.84).aspx
http://msdn.microsoft.com/en-us/library/d1wf56tt(v%3Dvs.84).aspx
http://msdn.microsoft.com/en-us/library/d1wf56tt(v%3Dvs.84).aspx

API Reference

Page 13

8 TAPI (1st Party)

Phone Manager has a 1st party TAPI driver (TSP) available that supports both inbound and outbound calls. TAPI is an industry
standard way of integrating a PBX into applications without having to perform the integration into each type of telephone
system that is to be supported.

The TSP supports TAPI v2 and TAPI v3. 3rd Party TAPI is not supported.

Phone Manager provides all the features for screen popping and direct dialling out from applications using TAPI – but the 3rd
party application must have implemented these features. If the application does not support these features then either they
need to do this or another method of integration must be used.

See the Phone Manager User Guide for more details.

MiVoice Office Phone Manager 5.0

Page 14

9 Contact Imports

The Communication Service that the Phone Manager clients connect to has the option to be able to import data and then make
this data available with certain types of integration. Each line of data is associated with a telephone number and can contain up
to 10 extra fields of information. For example the telephone number and a customer account number could be imported and

then when a call is received with that telephone number the account number of the matching record could be used to screen
pop their database record.

See the Phone Manager and Communication Service User Guide for more details.

API Reference

Page 15

10 Highlight and Dial

Phone Manager supports a highlight and dial feature. This works by highlighting a telephone number and then either double
clicking on the Phone Manager banner icon or pressing a configurable hot key. As long as the number can be copied and
pasted to and from the clipboard then this should work. This can be tested by highlighting the telephone number in the 3rd party

application pressing Ctrl+C then opening notepad and pressing Ctrl+V, if the number then appears in notepad it should be ok.

See the Phone Manager User Manual for more details.

MiVoice Office Phone Manager 5.0

Page 16

11 URI Schemes

Phone Manager supports a range of different well known URI schemes that enable applications to be able to do direct click to
dial by turning the telephone numbers into hyperlinks. For example if an application wraps the telephone number into this
format:

tel://01234567890

Clicking on this link will then cause this number to be dialled. The following URI formats are supported:

URI Scheme

Example

dial dial://01234567890

sip sip://01234567890

callto callto://01234567890

tel tel://01234567890

call call://01234567890

dialfrompm dialfrompm://01234567890

tel://01234567890/

API Reference

Page 17

mitel.com
© Copyright 2015, Mitel Networks Corporation. All Rights

Reserved. The Mitel word and logo are trademarks of Mitel

Networks Corporation.

Any reference to third party trademarks are for reference only and

Mitel makes no representation of ownership of these marks.

http://www.mitel.com/

