MiContact Centre Office - SDK
Technical Manual

NOVEMBER 2015
DOCUMENT RELEASE 6.2
TECHNICAL MANUAL

B30 Mitel

Technical Manual

Table of Contents

[N

o M w0 DN

What's New 15-16
Introduction 17
What Is In the SDK? 18
Installing the Software Developer's Kit 19
Creating User-Defined Actions 20
5.1. Macro Editor 21-22
5.1.1. Saving Macros 23
5.2. Simulation Mode 24
5.2.1. Simulating Calls 25-26
5.2.2. Simulating E-mails 27-28
CallViewer Macro Language 29
6.1. Macro Scripts 30
6.2. Expressions in Macros 31
6.3. ANSI References in Expressions 32
6.4. Line Labels and Conditional Jumps 33
6.5. Macro Variables 34
6.6. Screen Popping With Actions 35
6.6.1. Checking the Application 36
6.6.2. Checking the Call 37
6.6.3. Searching the Application for the Data 38
6.6.4. Keystrokes 39
6.6.5. Dynamic Data Exchange (DDE) 40
6.6.6. Identifying The Application 41
6.6.7. Application Names 42
6.6.8. Topics 43
6.6.9. Items 44
6.6.10. Starting a DDE Conversation 45
6.6.11. Supplying Data To Other Applications 46
6.6.12. Obtaining Data From Another Applications 47
6.6.13. Sending Commands To Other Applications 48
6.6.14. Closing DDE Conversations 49
6.6.15. Typical DDE Command Sequence 50
6.6.16. Example DDE Conversation 51-52
6.6.17. ODBC 53-55

Page 1

Mitel MiContact Center Office SDK 6.2

10.
11.
12.
13.
14.

6.6.18. Other Alternatives

6.7.

Call Control With Actions

6.7.1. Which Extension?
6.7.2. Which Call?
6.7.3. Blocking

6.7.4. Call Control Example

6.8.

Advanced Topics

6.8.1. Multitasking

6.8.2. CallViewer as DDE Server

CallViewerCallview Link Control

To create a VBScript macro in CallViewerCallview:

Using the Control

Using Methods

Using Properties

Using Events

Reference Introduction

Macro Commands Introduction

14.1.
14.2.
14.3.
14.4.
14.5.
14.6.
14.7.
14.8.
14.9.

14.10.
14.11.
14.12.
14.13.
14.14.
14.15.
14.16.
14.17.
14.18.
14.19.

ActivateApp
ActivateChild
ActiveXScriptRun
AppActivateLastFoc
AppActivateLastFocCopyText
AppActivateLike
AppActivateLikeChild
AppActivateLikeRight
AppActivateLikeRightChild
AppActivateLikeShell
AppCopyText
AppCopyTextEx
AppWindowHide
AppWindowMode
AppWindowMoveTo
AppWindowSetOrder
AppWindowShow
Beep

CallAnswer

Page 2

56
57
58
59
60
61-62
63
64
65-67
68
69-71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96

14.20.
14.21.
14.22.
14.23.
14.24.
14.25,
14.26.
14.27.
14.28.
14.29.
14.30.
14.31.
14.32.
14.33.
14.34.
14.35,
14.36.
14.37.
14.38.
14.39.
14.40.
14.41,
14.42.
14.43,
14.44.
1445,
14.46.
14.47.
14.48.
14.49.
14.50.
1451,
14.52.
14.53.
14.54.
14.55.

CallConference
CallDialDigits
CallDialDigitsInput
CallDrop

CallDropAll
CallHoldExclusive
CallHoldSystem
CallMake
CallMakeAppActivelLast
CallMakelnput
CallMonitor

CallPage

CallPickup
CallRecord
CallRetrieve
CallSelect
CallTransfer
CallTransferComplete
CallTransRedircmd
CallTransRedirDirect
ClipboardAppendText
ClipboardSetText
DataSetNum
DataSetStr
DataSetStrChrReplace
DataSetStrChrStrip
DataSetStrLeft
DataSetStrLen
DataSetStrMid
DataSetStrRight
DDECIlose

DDEOpen

DDEPoke
DDERequest
DDESendCmd
DDESetAppName

Page 3

Technical Manual

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132

Mitel MiContact Center Office SDK 6.2

14.56. DDESetTimeOut 133
14.57. DDESetTimeOutWarningOff 134
14.58. DDESetTopic 135
14.59. End 136
14.60. ExitMacroAppActive 137
14.61. ExitMacrolfCallType 138
14.62. ExitMacrolfNoCalls 139
14.63. ExitMacroNumValue 140
14.64. ExitMacroStrValue 141
14.65. FileClose 142
14.66. FileOpen 143
14.67. FileRead 144
14.68. FileReadLine 145
14.69. FileWrite 146
14.70. FileWriteLine 147
14.71. FormatTelephoneNumber 148
14.72. GetlniSetting 149
14.73. GlobalDataGet 150
14.74. GlobalDataSetNum 151
14.75. GlobalDataSetStr 152
14.76. Gosub...Return 153
14.77. Goto 154
14.78. GotolfAppActive 155
14.79. GotolfAppActiveChild 156-157
14.80. GotolfAppActiveRight 158
14.81. GotolfAppActiveRightChild 159-160
14.82. GotolfAppFocus 161
14.83. GotolfAppFocusChild 162
14.84. GotolfAppFocusRight 163
14.85. GotolfAppFocusRightChild 164
14.86. GotolfCallType 165-166
14.87. GotolfDateBetween 167-168
14.88. GotolfDDESendCmd 169-170
14.89. GotolfFileExists 171
14.90. GotolfMessageBox 172-174

Page 4

14.91.
14.92.
14.93.
14.94.
14.95.
14.96.
14.97.
14.98.
14.99.

14.100.
14.101.
14.102.
14.103.
14.104.
14.105.
14.106.
14.107.
14.108.
14.109.
14.110.
14.111.
14.112.
14.113.
14.114.
14.115.
14.116.
14.117.
14.118.
14.119.
14.120.
14.121.
14.122.
14.123.
14.124.
14.125.
14.126.

GotolfMessageBoxCustom

GotolfNoCalls
GotolfNoRecords
GotolfNumValue
GotolfStrLen
GotolfStrValue
GotolfStrValueLeft
GotolfStrValueLike
GotolfStrValueMid
GotolfStrValueRight
GotolfTimeBetween
GotolfWeekDay
InputBox
intAbout
intAutoMacro
intButtonsConfig
intCallDetails
intClearScreen
intDebugWindow
intExit
intGWin
intHotkeyMgr
intRefreshNetworkLink
intSettingsCC
intSettingsGWin
intSettingsAdvanced
intSettingsNetwork
intSettingsWindow
intSizeNormal
intSizeSmall
LocalDataGet
LocalDataSetNum
LocalDataSetStr
MacroBtnRun
MessageBox

MessageBoxCustom

Technical Manual

175
176-177
178
179
180-181
182-183
184-185
186-187
188-189
190-191
192-193
194-195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218-219
220-221

Page 5

Mitel MiContact Center Office SDK 6.2

14.127. MousePointer 222
14.128. MousePos 223
14.129. ODBCClose 224
14.130. ODBCGetField 225
14.131. ODBCMove 226
14.132. ODBCOpen 227-228
14.133. ODBCSetFieldNum 229
14.134. ODBCSetFieldStr 230
14.135. PostMessage 231
14.136. SendKeys 232-234
14.137. SendKeysEx 235
14.138. SendKeysNoWait 236
14.139. SendMessage 237
14.140. SetAccountCode 238
14.141. SetACDAgentState 239-240
14.142. SetErrorsFatal 241
14.143. SetForwardState 242
14.144. SetlniSettingNum 243
14.145. SetIniSettingStr 244
14.146. SetKeyState 245
14.147. SetStatusLine 246
14.148. SetTrunkCallParam 247
14.149. SetVolume 248
14.150. Shell 249
14.151. ShellEx 250
14.152. Wait 251
14.153. WaitAppTitle 252-253
14.154. WaitAppTitleTimeOut 254-255
14.155. YieldToOs 256
14.156. Macro Variables 257
14.156.1. AreaPrefix 258
14.156.2. AccountCode 259
14.156.3. ACDAgentID 260
14.156.4. ACDLoginCnt 261
14.156.5. ACDLoginCntAgID 262
14.156.6. ACDStatus 263

Page 6

14.156.7. CallAns
14.156.8. CallAnsTime
14.156.9. CallCLI
14.156.10. CallContact
14.156.11. CallCtrl
14.156.12. CallHeld
14.156.13. Callint
14.156.14. CallMediaType
14.156.15. CallOut
14.156.16. CallRingTime
14.156.17. Calls
14.156.18. CallSelected
14.156.19. CallSerialNo
14.156.20. CallSource
14.156.21. CallStartTime
14.156.22. CallWasOnHold
14.156.23. CanCallAnswer
14.156.24. CanCallConf
14.156.25. CanCallDial
14.156.26. CanCallDialDig
14.156.27. CanCallDrop
14.156.28. CanCallDropAll
14.156.29. CanCallHoldEx
14.156.30. CanCallHoldSys
14.156.31. CanCallRetrieve
14.156.32. CanCallTrans
14.156.33. CanCallTransComp
14.156.34. CanCallTransRedir
14.156.35. ConfPartyLimit
14.156.36. ClientActive
14.156.37. ClientName
14.156.38. ClientNameNum
14.156.39. Clipboard
14.156.40. Col1
14.156.41. Col2

Page 7

Technical Manual

264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298

Mitel MiContact Center Office SDK 6.2

14.156.42.
14.156.43.
14.156.44.
14.156.45.
14.156.46.
14.156.47.
14.156.48.
14.156.49.
14.156.50.
14.156.51.
14.156.52.
14.156.53.
14.156.54.
14.156.55.
14.156.56.
14.156.57.
14.156.58.
14.156.59.
14.156.60.
14.156.61.
14.156.62.
14.156.63.
14.156.64.
14.156.65.
14.156.66.
14.156.67.
14.156.68.
14.156.69.
14.156.70.
14.156.71.
14.156.72.
14.156.73.
14.156.74.
14.156.75.
14.156.76.
14.156.77.

Col3

Col4

Col5

Col6

Col7
CTIServerName
Data1

Data10

Data11

Data2

Data3

Data4

Data5

Data6

Data7

Data8

Data9

DDE1

DDE2

DDE3

DDE4

DDES

DDE6
DDIDigits
DevFirstRung
DialCombo
DialLast
DialPrefix

Digits

DNIS
EmailFromAddr
EmailFromName
EmailGrpQ
EmailProcessing
EmailSize

EmailSubjectText

Page 8

299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

15.

14.156.78.
14.156.79.
14.156.80.
14.156.81.
14.156.82.
14.156.83.
14.156.84.
14.156.85.
14.156.86.
14.156.87.
14.156.88.
14.156.89.
14.156.90.
14.156.91.
14.156.92.
14.156.93.
14.156.94.
14.156.95.
14.156.96.
14.156.97.
14.156.98.
14.156.99.

14.156.100.
14.156.101.
14.156.102.
14.156.103.
14.156.104.
14.156.105.
14.156.106.
14.156.107.
14.156.108.
14.156.109.

Methods

EmailTag
EmailTagOrig
EmailToAddr
EmailToName
EOF1
EOF2
EOF3
EOF4
EOF5
ErrorDesc
ErrorNum
INIFile
Line
LocalExtension
LongDate
LongDistPref
LongTime
Macros
MacrosNested
MediumDate
MediumTime
ODBCPos1
ODBCPos2
ODBCPos3
RND
ShortDate
ShortTime
TelNoFormatCount
Titlebar
WinDir
WinOS
WinSysDir

15.1. AppActivateLike

15.2. AppActivateLikeChild

15.3. CallAnswer

Page 9

Technical Manual

335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370

Mitel MiContact Center Office SDK 6.2

15.4. CallConference 371
15.5. CallDialDigits 372
15.6. CallDrop 373
15.7. CallDropAll 374
15.8. CallHoldExclusive 375
15.9. CallHoldSystem 376
15.10. CallMake 377
15.11. CallMonitor 378
15.12. CallPage 379
15.13. CallPickup 380
15.14. CallRetrieve 381
15.15. CallSelect 382
15.16. CallTransfer 383
15.17. CallTransferComplete 384
15.18. CallTransRedir 385
15.19. CallTransRedirDirect 386
15.20. DoCommand 387
15.21. GetDigitFormat 388
15.22. GetSettingStr 389
15.23. GetSettingVal 390
15.24. Initialise 391
15.25. IsWindowOpen 392
15.26. MacroBtnRun 393
15.27. SendKeys 394-395
15.28. SendKeysEx 396
15.29. SetAccountCode 397
15.30. SetACDAgentState 398-399
15.31. SetSettingStr 400
15.32. SetSettingVal 401
15.33. Shell 402
15.34. ShellEx 403
15.35. Uninitialise 404
16. Properties 405
16.1. AccountCode 406
16.2. ACDAgentID 407

Page 10

Technical Manual

16.3. ACDLoginCnt 408
16.4. ACDLoginCntAgID 409
16.5. ACDStatus 410
16.6. CallAns 411
16.7. CallAnsTime 412
16.8. CallCLI 413
16.9. CallContact 414
16.10. CallCtrl 415
16.11. CallHeld 416
16.12. Callld 417
16.13. Callint 418
16.14. CallMediaType 419
16.15. CallOut 420
16.16. CallRingTime 421
16.17. Calls 422
16.18. CallSelected 423
16.19. CallSerialNo 424
16.20. CallSource 425
16.21. CallStartTime 426
16.22. CallWasOnHold 427
16.23. CanCallAnswer 428
16.24. CanCallConf 429
16.25. CanCallDial 430
16.26. CanCallDialDig 431
16.27. CanCallDrop 432
16.28. CanCallDropAll 433
16.29. CanCallHoldEx 434
16.30. CanCallHoldSys 435
16.31. CanCallRetrieve 436
16.32. CanCallTrans 437
16.33. CanCallTransComp 438
16.34. CanCallTransRedir 439
16.35. ClientActive 440
16.36. ClientName 441
16.37. ClientNameNum 442
16.38. Clipboard 443

Page 11

Mitel MiContact Center Office SDK 6.2

16.39. Col(x) 444
16.40. ConfPartyLimit 445
16.41. CTIServerName 446
16.42. Data(x) 447
16.43. DDE(x) 448
16.44. DDIDigits 449
16.45. DevFirstRung 450
16.46. DialCombo 451
16.47. DialLast 452
16.48. DialPrefix 453
16.49. DigitFormatCount 454
16.50. Digits 455
16.51. DNIS 456
16.52. EmailFromAddr 457
16.53. EmailFromName 458
16.54. EmailGrpQ 459
16.55. EmailProcessing 460
16.56. EmailSize 461
16.57. EmailSubjectText 462
16.58. EmailTag 463
16.59. EmailTagOrig 464
16.60. EmailToAddr 465
16.61. EmailToName 466
16.62. INIFile 467
16.63. IsConnected 468
16.64. Line 469
16.65. LocalExtension 470
16.66. LongDate 471
16.67. LongTime 472
16.68. Macros 473
16.69. MacrosNested 474
16.70. MediumDate 475
16.71. MediumTime 476
16.72. ShortDate 477
16.73. ShortTime 478
16.74. Titlebar 479

Page 12

16.75.
16.76.
16.77.
16.78.

Username
WinDir
WinOS
WinSysDir

17. Events

17.1.
17.2.
17.3.
17.4.
17.5.
17.6.
17.7.
17.8.
17.9.

17.10.
17.11.
17.12.
17.13.
17.14.
17.15.
17.16.
17.17.

Busy

CallAnswer

CallDigits

CallHeld

Callldentified

CallNew

CallRemoved

CallRetrieved

DNDStatusChanged
ExtAccountCodeEntered
ExtAgentLogon
ExtAgentStatusChanged
ExtDigitsToVM
ExtDivertStatusChanged
ExtLostCall
ExtMessageToSupervisor

ldle

Page 13

Technical Manual

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501

NOTICE

The information contained in this document is believed to be accurate in all respects but is not warranted by Mitel Networks™
Corporation (MITEL®). The information is subject to change without notice and should not be construed in any way as a
commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and subsidiaries assume no responsibility for
any errors or omissions in this document. Revisions of this document or new editions of it may be issued to incorporate such
changes.

No part of this document can be reproduced or transmitted in any form or by any means - electronic or mechanical - for any
purpose without written permission from Mitel Networks Corporation.

TRADEMARKS
Mitel and MiTAI are trademarks of Mitel Networks Corporation.
Windows and Microsoft are trademarks of Microsoft Corporation.

Other product names mentioned in this document may be trademarks of their respective companies and are hereby
acknowledged.

MiContact Centre Office - SDK
Release 6.2 - November, 2015

®,™ Trademark of Mitel Networks Corporation
© Copyright 2015 Mitel Networks Corporation All rights reserved

Technical Manual

1 What's New

What's New in this Release

Release 6.2

Updated Branding & User Interface

This release of MiContact Center Office sees the product branding change from Customer Service Manager. MiCC
Office is the new abbreviation for CSM. Also included in the product is an updated user interface that implements the
following concepts:

e Updates to support the latest Windows common controls (buttons, tabs etc)
e Updates to the default color palette used by the client applications
e Updated icons and graphics to bring the product in line with Mitel Branding

Windows Support

MiCC Office Server:

e Windows 8.1 Standard/Professional/Enterprise (64-bit)

e Windows 8 Standard/Professional/Enterprise (64-bit)

e Windows 7 Professional/Ultimate SP1 (64-bit)

e Windows Server 2008 R2 SP1 (64-bit)

e Windows Server 2012 R2 Standard/Essentials/Datacenter Editions (64-bit)

MiCC Office client applications are supported on these versions of Windows:

e Windows 8.1 Standard/Professional/Enterprise (32-bit and 64-bit)

e Windows 8 Professional (32-bit and 64-bit)

e Windows 8 Standard/Enterprise (32-bit)

e Windows 7 Professional/Ultimate SP1 (32-bit and 64-bit)

e Windows Server 2008 R2 SP1 (64-bit)

e Windows Server 2012 R2 Standard/Essentials/Datacenter Editions (64-bit)

vSphere Support
MiCC Office 6.2 includes support for VMare vSphere 6.0 for deploying Virtual MiCC Office appliances and installing

MiCC Office on virtual machines. For information about deploying Virtual MiCC Office, see the Virtual Appliance
Deployment guide on the Mitel eDocs Web site www.edocs.mitel.com.

SMTP Support
SMTP emailing support has been added to Intelligent Router rules and the Auto Reporter features of Reporter. This

allows emails to be sent without having to have a MAPI enabled email client running. MAPI support has been left in the
applications for backward compatibility.

SMTP SSL\TLS Support

SSL\TLS support has been added to all areas where SMTP is used; Media Blending, Intelligent Router rules & Auto
Reporter. If your mail server supports the SSL\TLS feature then it can be enabled for use with MiCC Office.

Media Blending Add-In Update

The MiCC Office Callviewer plugin for Microsoft Outlook has been given a facelift and has been updated to support the
latest versions of Outlook.

Backup Utility Update

Page 15

http://www.edocs.mitel.com/

Mitel MiContact Center Office SDK 6.2

A new service based backup utility has been introduced to the MiCC Office Server to automate the process of keeping
multiple backups of the solution to help minimize the risk of data loss from hardware or software failure. This new
backup utility can store backups on the local server or a network drive.

Page 16

Technical Manual

2 Introduction

Introduction

CallViewer is a module in MiContact Center Office that provides first party call control of a call center agent’s phone, as well as
displaying information about who is calling or being called. It also allows a user to screen pop a customer’s record in the
company database based on the caller’s details, such as the telephone number. CallViewer comes with several “Ready To Go”
solutions pre-installed that will screen pop several common databases such as Microsoft Access, GoldMine, etc.

However, some companies may use a proprietary database for a specific end-solution, or a database that is not supported by
CallViewer . In that instance, the end-user would need to use a custom action to integrate with their database. The custom
action would take information that CallViewer knows about the call, and then interact with the database using COM, DDE or
keystrokes to display the customer’s details.

To achieve this CallViewer has a built-in macro language that enables the creation of advanced actions that can perform
repeated tasks quickly, based on information entered by the user, or information known by CallViewer . CallViewer Callview
also has an Active X control that allows a developer to integrate their application with CallViewer . The Software Developer’s Kit
(SDK) documents the macro language and the Active X control. CallViewer uses the compiler dongle when a user-defined
action needs to be compiled. CallViewer will not use an action until it has been compiled.

Page 17

Mitel MiContact Center Office SDK 6.2

3 What Is In the SDK?
What Is In the SDK?

The Software Developer's Kit consists of the following items:

e This manual: The manual documents how to create user-defined actions, along with use of the CallViewer macro
language and Active X control.

e The SDK help file: The help file is installed by the SDK installation program, enabling you to get help on the macro
language from within the macro editor.

e Compiler dongle: The compiler dongle is a USB key that you must plug into an available USB port when you want to
compile an action that you have written. CallViewer will check for the dongle when you save a user-defined action. If the
dongle cannot be found, the action is not compiled. An action that has not been compiled cannot be run. The dongle is
not needed to run the user-defined actions however.

e Sample Files: When you install the SDK, several sample actions are provided as text files to help you get started.
There are also some sample Visual Basic applications to help you learn how to use the Active X control.

Page 18

Technical Manual

4 Installing the Software Developer's Kit

Installing the Software Developer’s Kit

The installation of the SDK is very simple, since it is just an additional component to CallViewer . Before installing the
Developer SDK, ensure that you have installed CallViewer first. If you forget to install CallViewer , the Developer SDK install will
display an error message indicating that CallViewer needs to be installed first.

To install the SDK, insert the Developer SDK CD-ROM into your CD or DVD drive. The installation program automatically
starts. After you accept the license agreement, the installation program installs the necessary files to your hard drive.

By default, CallViewer is installed to C:\Program Files\ Contact Center Suite , with CallViewer being installed to a CallViewer
subfolder. Most of the SDK will be installed to a folder called SDK from the Contact Center installation folder, although some
files will also be installed to the CallViewer folder. Shortcuts are put in the usual Contact Center program group.

Note: If you uninstall CallViewer , the Developer SDK will not be automatically uninstalled. You should use the Developer SDK
uninstall routine to uninstall the SDK. Uninstalling the SDK will not uninstall any other element of CallViewer .

Page 19

Mitel MiContact Center Office SDK 6.2

5 Creating User-Defined Actions

Creating User-Defined Actions

You create and edit your actions in the Action Manager within . You can access the Action Manager from by right-clicking the
tray bar icon and choosing Actions.

The Action Manager shows a list of user-defined actions that you have created, along with instances of Ready To Go actions
that have been created. You can add a new user-defined action by clicking the Add button, and then selecting User Macro.

Alternatively, select the action that you want to change, and click Edit.
Adding or editing a user-defined action will display the Macro Editor, where you enter the code for your action.

Page 20

Technical Manual

5.1 Macro Editor

Macro Editor

The macro editor is where you enter the code for your user-defined actions. The macro editor consists of a toolbar, and the area
where you write your code.

Before you start writing your action, you should decide whether you are going to use the macro language, or an ActiveX scripting
language such as VBScript or JavaScript. Although you can choose the language at any time, you will find it easier if you set the
language correctly from the start.

You can choose the language for your action from the drop-down box on the toolbar. You can also enter any valid ActiveX scripting
language name in the drop-down box, if additional scripting languages are installed on the client computers.

Having chosen the language you want to use, you can start writing your code. See for further information.

The Editor

The main portion of the Macro Editor is taken up by the area where you enter your code. This works in the same fashion as a
standard Windows text editor such as Notepad. The status bar at the bottom of the window will indicate the current line and character
position that you are at, which is useful if an error occurs when you run your macro, and you need to locate the problematic piece of
code.

The Toolbar

The toolbar at the top of the Macro Editor consists of the following options:

- Main Menu: Displays the Main Menu. Information on the Main Menu options is available i
Menu the “Main Menu” section below.

H Save: Saves the action that you are writing. If you have not saved the action before then
Save you will be prompted for the name to give the action. If the action has been saved already

then it will be saved using the existing name. Use the Save As option on the menu if you
want to rename the action.

For further information on saving actions, see Saving Macros.

af Import: This option will prompt you for a text file to import at the current cursor location
Irnpork

] = Insert: Displays a menu of known functions and variables that can be used in the currentl
Insert selected macro language that you are using.

The menu contains two sections, Macros and Variables.

The Macros part of the menu consists of several sub-menus for different categories of
command. Each sub-menu consists of similar macro commands for the category that you
have selected. Selecting an item from a menu will insert that macro command at the curre
cursor position, and include the default parameters for that macro command.

The Variables part of the menu consists of several sub-menus for different categories of
variable. Each sub-menu consists of similar variables for the category that you have
selected. Selecting an item from a menu will insert that variable at the current cursor
position.

You can also click Macros or Variables to display the list of macros or variables in a dial
Selecting an item in the dialog will display a brief description of that item. Clicking Insert w
insert the selected command at the current cursor position.

a5 Cut: Places the highlighted text in the clipboard, before removing it from the editor.
Zuk

Page 21

Mitel MiContact Center Office SDK 6.2

E) Copy: Places the highlighted text in the clipboard.
Copy
& Paste: Inserts any text stored in the clipboard at the current cursor position.
Paste
I[Eall"-.-"iewer Maco] j Current Language: Specifies which macro language you are writing the action in. You

would normally select either Macro or VBScript in this section, although you can enter the
name of any ActiveX scripting language that is installed on the company’s computers. The
language that you select here will affect how compiles the action when save it. If you sele
the wrong language, you are likely to get compile errors when you save the action.

The Main Menu

Click the Menu button on the toolbar to display a menu containing the following options:

Save Compiles and saves your current macro using its current name. If the macro has not been saved before,
you will be prompted for a name for the macro, as if you had clicked Save As. See Saving Macros for
further information.

Save Prompts you for a name to save the macro as. This does not create another instance of the macro if it ha:

As already been saved; it effectively renames this macro with a new name. See Saving Macros for further
information on saving macros.
Import | Displays the standard File Open dialog box to allow you to select a text file that will be inserted at the
current cursor position.
Export | Displays the standard File Save dialog box to allow you to save the selected text in the Macro Editor as a
text file.
Cut Places the highlighted text in the clipboard, before removing it from the editor.

Copy Places the highlighted text in the clipboard.

Paste Inserts any text stored in the clipboard at the current cursor position.

Close Closes the Macro Editor. If you have not saved the macro after editing it, you will be prompted to save the
macro first. This option is the same as clicking the Windows close button on the Macro Editor window.

Page 22

Technical Manual

5.1.1 Saving Macros

Saving Macros

Before a macro can be used, it must be saved. Saving a macro also compiles it, which displays any errors in the macro syntax.
You can save a macro in several ways:

e Click the Save button on the toolbar.
e Choose the Save or Save As options on the main menu.

e Close the Macro Editor after making changes to the macro and not saving. You will be informed that you have not
saved, and can choose to continue closing without saving the macro, or save the macro now.

The first time that you save a macro you will be prompted to enter a name for the macro. The name of each macro must be
unique; if you enter a name that is already in use, you will not be allowed to continue.

The macro is then compiled and saved. When the macro is compiled, CallViewer will check that the SDK dongle is attached to
the computer. The dongle licenses CallViewer to be able to compile macros. If the dongle cannot be located, CallViewer will
display an error, and give you the opportunity to insert the dongle before trying to compile the macro again. If there is a syntax
error in your code, the macro will not be compiled, but will be saved. You will be informed of the error, and the related line of
code will be highlighted.

Note: Although you can close the Macro Editor after saving a macro that has failed to compile, you will not be able to run the
macro until it has compiled correctly.

Also: A CallViewer license is required for any CallViewer that tries to execute a user-defined macro.

Page 23

Mitel MiContact Center Office SDK 6.2

5.2 Simulation Mode

Simulation Mode

The Simulation Mode allows you to simulate calls and e-mail processing without connecting to the MiCC Office Server . Itis a very
useful tool for testing your macros with without having to create several calls or e-mails, and without the need to connect to a live
system.

To enable Simulation Mode, right-click the CallViewer tray bar icon, and select Options from the menu. On the Call Control tab, select
Enable Simulation Mode. You do not need a valid connection to a Contact Center Server when using simulation mode. However,
without a valid connection to a MiCC Office Server you will need to plug the SDK dongle into the computer to license CallViewer ,
because it normally decides on the license level based on a response from the MiCC Office Server . You should plug the dongle into
the computer before you enable simulation mode, otherwise you may not obtain a license, resulting in CallViewer not functioning.

The Simulation Window
The Simulation Window can be used to simulate calls and e-mails. The top part of the window contains a toolbar to select common

options, while the bottom part of the window, the Call / E-mail Detail area, allows you to configure information about the call or e-mail
being simulated.

The Toolbar

The toolbar consists of the following options:

[H Calls - Media Type To Simulate: Selects whether to simulate calls or e-mails. After you select the type
media to simulate, the lower half of the window will change to show settings that you can use to
simulate that type of media.

Update pdate: Updates CallViewer based on the settings you have specified in the lower half of the
d Update: Updates CallVi based on the setti h ified in the | half of th
Simulation window. If you have specified settings for a new call, then clicking this button would
make a new call appear in CallViewer .

H Delete Delete: Deletes the call or e-mail based on the current settings in the simulation window.

& Toggle Answer: Toggles the Answered state of the given simulated call. If the call is alerting it w
be shown as answered, and if it is answered it will return to alerting. If no call is being simulated,
click this button to use the settings in the lower half of the simulation window to create a new
simulated call.

4y Toggle Hold: Toggles the Hold state of the given simulated call. If the call is on hold it will be tak
off hold, and if the call is not held it will become held. If no call is being simulated, click this buttoi
to use the settings in the lower half of the simulation window to create a new simulated call.

B Busy Busy: Simulates the handset becoming “busy,” i.e., being taken off hook.

EH1ide Idle: This button mimics the handset going “idle”, i.e., being placed on hook.

Page 24

Technical Manual

5.2.1 Simulating Calls

Simulating Calls

To simulate a call, first ensure that you have selected Calls from the Media Type option on the toolbar. Then fill in the Call / E-
mail Detail section of the Simulation window and click Update. The controls in the Flags section can be used to modify the state
(held, answered, etc.) of the call.

The “Line / Extension No” field is used to define the call you are changing. If you have created a simulated call on line “100”,
and want to simulate a second call, you should change the “Line / Extension No” field to a different value, e.g., “101”, which
would result in two calls being shown in — one from device 100, and one from device 101.

Note: If you select a call in the Active Call List window, its current details will be displayed in the Simulation window’s Call / E-
mail Detail section.

To remove a simulated call from the display, enter the line/extension number for the call into the Line/Extension No text box,
and then click Delete.

The call properties shown below can be entered for a simulated call.

/ Digits The digits or received for the simulated call, which corresponds to the subsequent
value of the [Digits] macro variable for the current call.

For a manual (button) macro, the current call is the selected call in the call list. For
an automatic macro the current call is the activating call in the call list that caused
the macro to run.

Line / Extension No The line or extension number for the simulated call, which corresponds to the
subsequent value of the [Line] and [Col1] macro variables for the current call.

DNIS (Col 2) The DNIS string for the simulated call, which corresponds to the subsequent value
of the [DNIS] and [Col2] macro variables for the current call.

Ordinarily, this call property would take one of the following string values for the
current call; either the DNIS string found against the number by the distant end, the
trunk line description for external non- calls, or the value “[Internal]” if the current
call is an internal call.

Col 3 (Import Field 2) The value held within column 3 of the call list for the simulated call, which
corresponds to the subsequent value of the [Col3] macro variable for the current
call. Normally, column 3 would represent field 2 from the matched record in the
telephone data import file that the MiCC Office Server () uses to identify and digits
against, although this would only be the case for external calls.

Col 4 (Import Field 3) The value held within column 4 of the call list for the simulated call, which
corresponds to the subsequent value of the [Col4] macro variable for the current
call. Normally, column 4 would represent field 3 from the matched record in the
telephone data import file that the MiCC Office Server () uses to identify and
digits against, although this would only be the case for external calls.

Col 5 (Import Field 4) The value held within column 5 of the call list for the simulated call, which
corresponds to the subsequent value of the [Col5] macro variable for the current
call. Normally, column 5 would represent field 4 from the matched record in the
telephone data import file that the MiCC Office Server () uses to identify and digits
against, although this would only be the case for external calls.

Col 6 (Import Field 5) The value held within column 6 of the call list for the simulated call, which
corresponds to the subsequent value of the [Col6] macro variable for the current
call. Normally, column 6 would represent field 5 from the matched record in the

Page 25

Mitel MiContact Center Office SDK 6.2

telephone data import file that the MiCC Office Server () uses to identify and digits
against, although this would only be the case for external calls.

Col 7 (Import Field 6)

The value held within column 7 of the call list for the simulated call, which
corresponds to the subsequent value of the [Col7] macro variable for the current
call. Normally, column 7 would represent field 6 from the matched record in the
telephone data import file that the MiCC Office Server () uses to identify and digits
against, although this would only be the case for external calls.

Digits

A value representing the actual digits or number (depending on the telephone
system) for the simulated call, which corresponds to the subsequent value of the
[DDIDigits] macro variable for the current call.

Call Serial No

The unique serial number for the simulated call, which corresponds to the
subsequent value of the [CalLSerialNo] macro variable for the current call.

Answered?

Use the Yes button to indicate that the given call is answered, or the No button to
indicate that the call is alerting.

Direction

Use the In button to indicate that the given call is inbound, i.e., another caller calling
this device, or use the Out button to indicate that the given call is outbound, i.e., a
call from this device.

Internal?

Use the Internal button to indicate that the given call is internal, i.e., to another
device on the telephone system, or use the External button to indicate that the
given call is external, i.e., to an outside number.

Held?

Use the Yes button to indicate that the given call is currently on hold, or use the No
button to indicate that the given call is currently active (not on hold).

Tel.No.Match?

Use the Yes button to indicate that the given telephone number has been identified
against the Telephone Number Import file, or use the No button to indicate that it
has not.

A telephone number that has been matched against the Import file is one that can
be screen popped using information from Import Fields 2 to 6, since it means that
the Import Fields contain valid information. If the telephone number has not been
matched, it means that the Import Fields do not necessarily contain valid
information.

Received?

Use the Yes button to indicate that was received for this call, or use the No button
to indicate that was not received for this call.

Note: It is possible to configure the flags so that they do not make sense, e.g., no valid telephone number in / Digits, but the
Received flag set to Yes. This is something to be aware of when testing your user action using the Simulation Window.

Page 26

Technical Manual

5.2.2 Simulating E-mails

Simulating E-mails

To imitate an e-mail being processed that was routed to the associated extension by media-blending Rule, fill in the E-mail Details
section (the area below the buttons) of the Simulation window and click Update.

To simulate the end of e-mail processing, click Delete. Unlike for calls, you can simulate only one e-mail message being processed

at a time.

The following properties can be entered for a simulated e-mail:

(Display Name)

E-mail From The actual e-mail address of the sender, e.g., “customer@company.com”, which correspond
(Address) to the subsequent value of the [EmailFromAddr] macro variable.
E-mail From The description assigned against the e-mail address of the sender, which corresponds to the

subsequent value of the [EmailFromName] macro variable. The description can be defined
the original sender of the e-mail, or the local e-mail server depending on the type of server
and/or the server’s particular configuration.

E-mail To (Address)

The e-mail address of the inbound mail queue that the e-mail was sent to and distributed via
using media-blending rule. This message property corresponds to the subsequent value of tl
[EmailToAddr] macro variable.

E-mail To (Display
Name)

The description assigned against the e-mail address of the inbound mail queue that the e-m:
was sent to and distributed via using media-blending rule. The description can be defined by
the original sender of the e-mail, or the local e-mail server depending on the type of server
and/or the server’s particular configuration.

This message property corresponds to the subsequent value of the [EmailToName] macro
variable.

Subject Text

The subject line of the e-mail message (255 characters maximum length) as seen by the use
in their local e-mail client against the corresponding e-mail. This value corresponds to the
subsequent value of the [EmailSubjectText] macro variable.

E-mail Tag

The internal reference code assigned by to the e-mail message, which is unique in real-time
all active e-mail messages being queued by any media blending Rule. The property
corresponds to the subsequent value of the [EmailTag] macro variable.

Queue (Hunt

The device number of the hunt group, which corresponds to the media blending queue that t

Group) e-mail message arrived via, as defined within ’s hunt group configuration. The property
corresponds to the subsequent value of the [EmailGrpQ] macro variable.
Original Tag The internal reference number of the e-mail message assigned by the instance that

downloaded the message. The property corresponds to the subsequent value of the
[EmailTagOrig] macro variable.

It is this value that can be used to identify the actual e-mail message in the user’s e-mail clie
(e.g., Microsoft Outlook). The e-mail message will exist in the user’s inbox and will contain th
tag at the beginning of the message’s subject line. The display format of the tag’s value is th
hex representation of the number and is always padded with leading zeros so that the tag’s
length is always 8 characters long, as well as the tag value being encapsulated using the
character sequences “#[” and “J#". For example, an e-mail message with an original tag valu
of 10 would be displayed in the subject line as “#[0000000a}#”. As an illustration, here is an
example subject line for an e-mail message that has been distributed using media-blending
Rule: “#[00000002]J# Attn Technical Support”.

Size (Bytes)

The size in bytes of the e-mail message, which corresponds to the subsequent value of the

Page 27

Mitel MiContact Center Office SDK 6.2

[EmailSize] macro variable.

Note: If you have enabled the Simulation window but you have accidentally closed it, you can open the Simulation window again by
selecting the “Show Simulation Window” menu item on the main menu. Right-click the tray bar icon to access the main menu.

Also: While the Simulation window is open, you can select a call within the call list which will appropriately update the Simulation
window’s Call / E-mail Details section.

Page 28

Technical Manual

6 CallViewer Macro Language

CallViewer Macro Language

CallViewer provides a programming interface where the user can write native CallViewer macro scripts that can interrogate and
drive CallViewer , e.g., making a call, activating a window, etc. This section will give a brief introduction to the macro language,
explaining what a macro script consists of, and then later on introducing some of the more commonly used commands. A
complete reference for the macro language is available in the Reference topics.

Macro Scripts

Expressions in Macros

ANSI References in Macros

Page 29

Mitel MiContact Center Office SDK 6.2

6.1 Macro Scripts

Macro Scripts

A macro script consists of a list of macro commands. A macro command is a lot like a verb in a modern language — it describes
something that needs to be done. Macro commands can also accept parameters that define how things should be done.
Parameters are a lot like nouns in a modern language.

When writing a macro, each separate macro command statement should be on a separate line. You may insert empty lines if
you want to make the macro script more readable. You can also add comments to your script to help you remember what it
does by prefixing a line with a single quote.

Each native macro command has a Command part (the verb) and, if required, one or more Arguments (nouns).

Cn:-mll'mnl:l Part Argument Part Suqn:-unded By Brackeis
BppActivateLike Shell{"Ndttpad™, “C-WINDOWSNOTEPAD.EXE™) !

| 1 |]
15t argument Znd argument

The Command Part identifies the macro’s own individual function. The arguments allow you to specify information that the
macro command needs to perform its particular operation. If the macro command requires more than one argument, a comma
must separate each of these.

Specifying several macro commands together forms a macro script, and each macro command will be performed in turn,
waiting for the last one to complete before proceeding to the next.

You can write a macro directly as VBScript, JScript, or JavaScript, in which case the rules for writing such a macro are different.
However, programming in such languages is intended only for professional programmers, and so no entry-level introduction will
be considered here.

Expressions in Macros

ANSI References in Macros

Page 30

Technical Manual

6.2 Expressions in Macros

Expressions in Macros

Some macro commands accept arguments that can be built up from expressions. An expression is a special combination of
keywords and operators that returns a result at runtime, as illustrated in the following example.

Semdbeys| [Col1] + =)
] T L 1 T 1
Fscro Mormal
Wariable Sarimg
Audditiom
Ciperator

The above example shows the SendKeys macro command statement. This macro command can be used to send a keystroke
sequence to the currently active application window.

The SendKeys macro has one argument, which specifies the keystroke sequence that will be sent. In this example, the

“« n

argument is an expression ([Col1] + “, ”), which at runtime would yield the value from column 1 of the selected call in the call
list, with a comma and space character appended to the end. [Col1] is a Macro Variable. There are many of these, and each
allows you to access values that can change during macro runtime. See Macro Variables for more details.

An expression is a combination of constants, macro variables, and mathematical operators (i.e., +, -, *, /, etc.). For example, the
expression (2 + 5) * 3 would return 21.

The + operator also operates as a way of adding strings together, e.g., “The ” + “cat sat” + “ on the mat.” would return “The cat
sat on the mat.”.

Macro Scripts

ANSI References in Macros

Page 31

Mitel MiContact Center Office SDK 6.2

6.3 ANSI References in Expressions

ANSI References in Expressions

When you are specifying information to a native macro command by writing a string value into one of it's arguments, there are

some characters that cannot easily be specified. For instance, the characters “a” to “z”, “0” to “9” etc. are easily specified
because you can insert them easily by pressing the corresponding key on the keyboard.

In contrast, control characters such as Escape, Carriage Return, Line Feed, etc. are not so easily inserted because pressing
the Escape or Enter keys on the keyboard, performs an action in the user interface instead of actually inserting a character.

However, there is a way to specify any ANSI-compatible character in your macro string arguments.

Control characters can have a special meaning to applications. For example, the clipboard interprets a Carriage Return (ANSI
character 13) followed by a Line Feed character (ANSI character 10) as the start of a new line within text.

Within macro command arguments, string (character) expressions may be constructed using ANSI character references inside
“curly” bracket parentheses. Placing a number within the parentheses specifies the actual ANSI text character:

“This Line” + {13} + “Next Line”

Putting a space before the closing bracket followed by another number specifies that the ANSI equivalent of the specified
number will get repeated that many times (e.g., {10 12} = 12 line feed characters in a row).

The following is an example of a macro command with one argument built from an ANSI character expression:
' Copy text with carriage return and line feed
' characters appended to the end of string.

ClipboardSetText (™ ” + {13} + {10})

Macro Scripts

Expressions in Macros

Page 32

Technical Manual

6.4 Line Labels and Conditional Jumps

Line Labels and Conditional Jumps

CallViewer s macro language allows conditional execution based on the state of another application, or the evaluation of
expressions. This is supported through the use of line labels and conditional jumps.

For instance, you might want to automate a specific task only when a call is from a particular location or for calls on an
individual DID number.

The macro language supports conditional branching to specific points in the macro script defined by line labels through the use
of “Goto” macro command statements. The line labels are text strings with no space or punctuation characters ending in a
colon. Each line label must be unique in the macro in which it is used. Line labels are not case sensitive.

The first argument in any of the “Goto” macro command must refer to a valid line label with the current macro script.
For example, the following macro would only show a message box if a call was received with DID digits of “5000”:

' Branch if DID digits equal “5000”

GotoIfStrValue (“1labelDDI5000”, [DDIDigits], “5000”, O0)

Goto (“labelExit”) ' Exit if DID digits are not “5000”.

1abelDDI5000:

' Show message window.

MessageBox (Y DID 5000 call”, 0, “ CallViewer ”)

labelExit:

Page 33

Mitel MiContact Center Office SDK 6.2

6.5 Macro Variables

Macro Variables

Native macro command argument expressions can refer to macro variables that are replaced at runtime with the related value.
There are macro variables for call properties, such as the of the current call, as well as variables for other information, such as
the current time, or the title of the currently active application.

Macro variable names are enclosed in square brackets, e.g., [Digits]. This differentiates them from constants, such as text or
numbers. For instance, the following would be a valid expression:

“Tel ” + [Digits]
When the macro is run this would evaluate as...
Tel
...if the currently active call was from “”.
The following is an example of a macro command with 1 argument built from an expression that uses a variable reference:
' Copy line number of current call with carriage return

' and line feed characters appended to the end of string.

ClipboardSetText (“Line Number: ” + [Line] + {13} + {10})

A complete list of macro variables is available in the Reference topics.

Page 34

Technical Manual

6.6 Screen Popping With Actions
Screen Popping With Actions

Screen Popping is where will automatically locate a customer’s details in your company database using information on the
currently active call. If you are using a proprietary database, then you will probably need to create a user action to screen pop
your database. This section explains the common elements of a screen popping action, and introduces some macro commands
that will achieve a screen pop.

Any screen popping action will generally follow the following format:
e Check the application
e Check the call
e Search the application for the data

Each of these elements is described in the topics linked above. However, a successful screen pop will also depend on the data
integrity of the application to be screen popped, and the information contained in the Import file.

Page 35

Mitel MiContact Center Office SDK 6.2

6.6.1 Checking the Application
Checking the Application

Before attempting to drive an application, the action should ensure that the application is at an appropriate point to be driven. If
dialog boxes are open, or the application is in an unexpected view, the screen pop may not work.

In some situations you can work around the problem, e.g., switching to a particular view, or closing an open dialog box.
However, it is sometimes necessary to limit the macro so that it has to expect the application to be in a given state before
screen popping. In such a situation, the customer or user must be informed of the limitation.

At a minimum, you must ensure that the application is open. This is achieved with the GotolfAppActive or
GotolfAppActiveRight commands, which jump to a specific point in the action based on whether a window is open or not. The
following code sample checks if Microsoft Access is open, ending the action if it isn't.

' Jump to AccessOpen i1if window “Microsoft Access” is open
GotoIfAppActive (“AccessOpen”,“Microsoft Access”, 1)

' Access 1s not open, so quit the macro

End

AccessOpen:

' Access 1is open so continue

Note: If you want to check for an application using the end part of the window title, use the GotolfAppActiveRight macro.

Page 36

Technical Manual

6.6.2 Checking the Call
Checking the Call

After checking that the application to be screen popped is open, you should check the state of the call to ensure that it is
appropriate for screen popping.

The first thing to do is check that calls are present at the current extension. This is achieved with the GotolfNoCalls command,
which jumps to a specific point in the action based on the number of calls present at the extension. The following code sample
checks that only one call is present at the extension, ending the macro otherwise.

' Jump to OneCall if only one call

GotoIfNoCalls (“OneCall”,1,0)

' Dropped through to this line, so not one call, so end
End

OneCall:

' Only one call at the extension, so continue...

After checking the number of calls, check the status of the call, e.g., answered, held, contact identified, etc. This is achieved
with the GotolfCallType command. This command accepts a call status flag to compare against the current call, and jumps to
a specific point in the action based on whether this flag is set or not. You may have to call this command more than once to
completely check the status of call. The following code checks the call status, first to see if the contact is identified, and second
to ensure that the call is inbound.

' Check that the contact is identified, jumping to
' ContactFound if it is

GotoIfCallType (“ContactFound”, 8,0)

' Contact not found, so end

End

ContactFound:

' Check that the call is inbound, Jjumping to CallInbound
''if it is

GotoIfCallType (“CallInbound”, 3,0)

' Call is outbound, so end

End

CallInbound:

' Continue with the screenpop

Finally, you should check the data that you will be screen popping from. How this is done depends on how you intend to
screenpop the data. Usually, the Import should be configured so that every telephone number to use in screen popping will be
associated with a unique identifier with which to screenpop. Let's assume that in the Import, the sixth field will contain an
identifier with which we can screenpop the application. Therefore, we need to check that the sixth field contains the appropriate
data. The following code checks field 6 to ensure it contains data.

' Check that the sixth field (variable [Col7]

' since [Coll] is the line number the call came
' in on, and [Col2] is the DNIS for the line)

' contains data. Jump to GotData if it does
GotoIfStrValue (“GotDhata”, [Col7],Y,1)

' Col7 is blank, so we cannot screenpop

End

GotData:

' Continue here

Page 37

Mitel MiContact Center Office SDK 6.2

6.6.3 Searching the Application for the Data
Searching the Application for the Data

How you actually screen pop a record depends completely on the application you are screen popping. In essence, there are
two ways of screenpopping - with keystrokes, ODBC, and with Dynamic Data Exchange (DDE). See also Other Alternatives.

Page 38

Technical Manual

6.6.4 Keystrokes

Keystrokes

Screen popping with keystrokes involves activating the application, sending keystrokes to it to display a search dialog, and then
more keystrokes to enter the data to be searched for.

First you must activate the application, or a window belonging to the application, so that keystrokes can be passed to the
window. This is achieved with the ActivateApp macro command.

ActivateApp activates the top-most window that has a caption that matches the text provided. The command is useful because
it allows wildcards to be used in the specified text. For example, the command:

ActivateApp (“Microsoft Word*”)
would activate the first window that started with “Microsoft Word”. Alternatively, the command:
ActivateApp (“*Notepad”)

would activate the first Notepad window (since Notepad puts the open filename at the start of the caption, and not at the end
like Word does, e.g., “My Notepad File — Notepad”).

Having activated the application appropriately, you can then screen pop it. This is achieved by sending keystrokes to the
window. Normally these keystrokes would display some form of Search window, into which the data to search for would be
entered, again by sending keystrokes to the active window.

Two macro commands are available for sending keystrokes to a window - SendKeys and SendKeysEx. Both accept a string
that contains the keystrokes to be sent. SendKeysEx however also accepts a delay to use between each keystroke.

The keystroke string can be composed of normal ASCII characters, e.g., “These are my keystrokes,” or can contain special
characters enclosed between { and }. This is normally used for sending non-ASCII characters, such as the End, Escape and
cursor keys. For example, the following statement enters some text into Notepad, and then selects the entire text:

ActivateApp (“*Notepad”)
SendKeysEx (" {HOME }This is a test~+{UP}”,0)

See SendKeys for information on the non-ASCII characters that can be used between { and }, as well as the meaning of the
modifiers *, %, and +.

Generally speaking, you should normally use SendKeys to send keystrokes to normal Windows applications, and SendKeysEx
to send keystrokes to DOS applications or Win32 console applications running in a window. However, there can be exceptions
to the rule that depend entirely on the application being screen popped.

Screenpop Example

The following action screenpops a fictitious DOS application, using the SendKeysEx command.
ActivateApp (“*Fictitious DOS Application*”)

' We assume that the application is at the main menu.

' We must select option 2, to browse the customer records
SendKeysEx (“2”,0)

' The customer records can be searched by pressing

' Alt and S

SendKeysEx (“%s”,0)

' Now enter the account reference, which we retrieve from
' the last field of the MiCC Office import ([Col7])
SendKeysEx ([Col7]+“{ENTER}”,0)

' The application will now display the record, or will

' display an error message to the user, so they can

' create a new record

For more information regarding these commands, see the Macro Commands topics in the Reference section.

Page 39

Mitel MiContact Center Office SDK 6.2

6.6.5 Dynamic Data Exchange
Dynamic Data Exchange (DDE)

Dynamic Data Exchange (DDE) is a method of sending a foreign application commands and data. For instance, using DDE it is
possible to execute menu commands and send data directly to an application. The type of things you can do with DDE depends
on the application you are trying to communicate with.

Generally, all Microsoft Office products have excellent DDE facilities. For example, you can open a form in Microsoft Access
and navigate to a required record all by using DDE.

Two applications using DDE to exchange data are said to be involved in a DDE conversation.

can invoke more than one conversation (up to six) with the same application at the same time, but each conversation occurs on
a different channel. You can initiate DDE conversations in using the macro language.

The application that initiates a conversation is called the destination application, or DDE client, for that conversation. The
application that responds to a DDE client is called the source application, or DDE server, for that conversation. Some
applications can initiate a conversation with an application on one channel and respond to another application on another
channel.

The following topics provide more details on using DDE.
Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 40

Technical Manual

6.6.6 Identifying The Application
Identifying The Application

Before you can have a conversation with an application, you need to be able to identify which application you are going to
communicate with, and what information you will be asking it about.

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 41

Mitel MiContact Center Office SDK 6.2

6.6.7 Application Names

Application Names

Every Windows-based application that can participate in DDE conversations has a unique application name. For example,
GoldMine’s name is “GOLDMINE,” and Microsoft Access uses “MSAccess.”

To get the application name of another application, see the documentation for that application. The application name is usually
the name of the executable file for that application, without the .EXE extension.

Identifying The Application

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 42

Technical Manual

6.6.8 Topics

Topics

A topic defines the subject of the DDE conversation and represents some unit of data meaningful to the DDE server application.
For most applications that operate on files, this is a file name. Some possible topics are a Microsoft Excel worksheet name, for
example ORDER. XLS, or the name of a Microsoft Access database.

Generally, when a topic refers to a file, that file must be open for the DDE server to respond to a conversation initiated about
that topic.

Identifying The Application

Application Names

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 43

Mitel MiContact Center Office SDK 6.2

6.6.9 Items

Items

An item is a reference to a piece of data (such as a range of cells in a Microsoft Excel worksheet, or a database object in a
Microsoft Access database) that can be exchanged between two applications. An item refers to a specific element of a topic.

You need to specify the Application Name and Topic to be able to open a conversation, but having opened a conversation you
deal with Items relating to the Topic of the conversation.

Identifying The Application

Application Names

Topics

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 44

6.6.10 Starting a DDE Conversation
Starting a DDE Conversation

To begin a DDE conversation, you must specify two things:
e The name of the server or source application to talk to.

e The topic of the conversation.

Technical Manual

When a server receives a request for a conversation about a topic it , it responds by opening a channel. Once established, a
conversation cannot change topics or applications. To begin a conversation with a different server or with the same server
about a different topic, you must start a new conversation on a different channel. This does not affect the conversation on the

first channel; you can either end the first conversation or continue it.

After a conversation has begun, the two applications exchange messages concerning particular items. An item is usually a
reference to a piece of data contained in the topic. Iltems can vary from topic to topic, and each server can different topics.

To initiate a DDE conversation with another application, use the DDEOpen macro command. For example, the following
sample will initiate a conversation on channel 1 with Microsoft Excel about a loaded worksheet named “ORDERS.XLS”:

DDESetAppName (1, “Excel”) ' Set application name.

' Set topic name for DDE conversation.
DDESetTopic (1, “Orders.xls”)
DDEOpen(l) ' Start DDE conversation.

If DDEOpen is not successful in initiating a conversation with the specified application an error occurs. An error can occur if the
specified application is not already running, or if the specified application is running but does not the specified topic.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 45

Mitel MiContact Center Office SDK 6.2

6.6.11 Supplying Data To Other Applications
Supplying Data To Other Applications

Data can be provided to another application in a DDE conversation using the DDEPoke macro command. For example, if you
have initiated a conversation with Microsoft Excel using a worksheet as a topic, you can place a new value in the upper-left cell
of the worksheet using:

DDEPoke (1, “R1C1”, “100”)
Microsoft Excel interprets “100” as the numeric value 100.
DDEPoke can be interpreted as saying “store this value against this item.”

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 46

Technical Manual

6.6.12 Obtaining Data From Another Applications
Obtaining Data From Another Applications

Data can be requested from another application in a DDE conversation using the DDERequest macro command. The collected
data returned by the DDERequest macro statement is stored in the appropriate [DDEn] macro variable, where n corresponds to
the specified DDE channel used (e.g., [DDE1] for channel 1, [DDEZ2] for channel 2... etc.).

For example, if you initiate a conversation with the System topic for any valid DDE application name, you can retrieve a list of
all topics currently supported by that application:

DDERequest (1, “Topics”)

If the specified channel does not refer to an active DDE conversation, then an error is generated. You will also get an error if
the item was not by the application.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Sending Commands To Other Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 47

Mitel MiContact Center Office SDK 6.2

6.6.13 Sending Commands To Other Applications
Sending Commands To Other Applications

You can use a DDE conversation to send a command string to another application, although not all applications accept

command strings sent in this way. Some, such as Microsoft® Excel® and Word, accept any command string sent to them and
carry out that command as if they had been running a Word Basic or Visual Basic macro command.

You send a command string to another application using the DDESendCmd or GotolfDDESendCmd statements.
For example, you can send a command to Microsoft Excel that makes it open a worksheet:
DDESendCmd (1, “[OPEN (”“ORDERS.XLS”™“)]1")

The use of square brackets surrounding the “OPEN” command is a Microsoft Excel convention. Microsoft® Access® and Word®
for Windows also employ this convention. Other applications may use other conventions, so check your application’s
documentation for details. The double quotation mark characters are necessary to embed quotation mark characters in the
string, which is required by Microsoft Excel.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Closing DDE Conversations

Typical DDE Command Sequence

Example DDE Conversation

Page 48

Technical Manual

6.6.14 Closing DDE Conversations

Closing DDE Conversations

When you are finished exchanging data with another application in a DDE conversation, you must close that conversation with
DDECIlose. When execution reaches the end of a macro script all open DDE conversations are closed anyway.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Typical DDE Command Sequence

Example DDE Conversation

Page 49

Mitel MiContact Center Office SDK 6.2

6.6.15 Typical DDE Command Sequence
Typical DDE Command Sequence

A typical sequence of events in a DDE conversation is as follows:

1. Set DDE parameters on a channel using DDESetTimeOut and DDESetTimeOutWarningOff.
2. Set the DDE application name for the conversation using DDESetAppName.

3. Set the topic name for the conversation using DDESetTopic.

4. Start the conversation using DDEOpen.

5. Send commands or data to the application using DDESendCmd or DDEPoke.

6. Close the conversation using DDEClose.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications
Closing DDE Conversations

Example DDE Conversation

Page 50

Technical Manual

6.6.16 Example DDE Conversation

Example DDE Conversation

The following native macro example finds the company record details in a Microsoft Access database (CONTACT . MDB) for the
selected call.

First, a DDE conversation is initiated with Microsoft Access using the name of the database as the topic name. Then the
appropriate form is opened in the database and the focus is set on the telephone number field. A search is then performed
using the telephone number of the caller at the distant end of the trunk line.

' Set the focus to Microsoft Access.
AppActivatelLike (“Microsoft Access”)

YieldToOS

' Start a DDE conversation with MS Access.
DDESetTimeOut (2, 5)

DDESetTimeOutWarningOff (2, 1)

DDESetAppName (2, “MSAccess”)

DDESetTopic (2, “CONTACT"”)

DDEOpen (2)

' Open the Company form in the Access database.
DDESendCmd (2, “[OpenForm ”““Company”™“1]”)

' Set the focus to the telephone number field.
DDESendCmd (2, “[GotoControl ”““Telephone”“]1”)

' Find the record for the caller’s number.
DDESendCmd (2, “[FindRecord ”“” + [Digits] + “”"“1”)
' Close the DDE conversation.

DDEClose (2)

For this example to work, Microsoft Access needs to be running already. However, since the exact telephone number of the
caller is used to attempt to find the record, no guarantee can be made that the correct record will be found because the
database may have the telephone number stored in another format (e.g., with spaces or not phone day compatible).

Note: Generally, it is better to use another piece of information than the telephone number to find data in another application.
For example, an account number, contract number or sales lead number would be far better. However, for this method to work,
the required information needs to be provided in the Import file.

Identifying The Application

Application Names

Topics

Items

Starting a DDE Conversation

Supplying Data To Other Applications
Obtaining Data From Another Applications
Sending Commands To Other Applications

Page 51

Mitel MiContact Center Office SDK 6.2

Closing DDE Conversations

Typical DDE Command Sequence

Page 52

Technical Manual

6.6.17 ODBC
ODBC

The Callviewer macro language added support for ODBC in version 4.1. ODBC (Open Database Connectivity) support allows
the language to perform database queries against a variety of database types using ODBC drivers supplied with Windows. The
ODBC commands in the macro language allow you to directly request information from a given database. However, you cannot
use ODBC to make an application display information. You would need to use keystrokes or DDE to display the appropriate
data in the application.

Since the ODBC commands are directly querying the customer database, there are several pieces of information you will need
for the commands to function:

e The connection details for the ODBC driver.
This tells ODBC which driver to use, and where the database is stored.

e Username and password.
Most databases require a username and password to access the information. This is typically provided in the
connection details.

e Database query.
The macro language performs queries on the selected database. You will need to know the query you intend to
perform, which invariably requires knowledge of the database structure, such as which tables to include in the query,
and the field names used in those tables.

Opening and Closing a Database

To open a database using the macro language, you will use the 0ODBCOpen command. This takes a connection string to define
where the database is, and a query string, to define what data you want to query in the database.

It is also a good idea to check that your query has returned some results, since trying to read results when there are none will
result in errors!

Before your macro finishes, it should close the database with ODBCClose.

The following example opens a sample SQL Server database, and checks that it has some valid results.
' Open the database. For clarity, we'll store the connection
‘'string in the [Datal] variable, and the query in the [Data2]
‘" variable. The connection string states that the SQL Server is

‘' on the "DBPC" computer and that the database name is "Pubs", ' using the default SQL
Server
' username and password.

DataSetStr(l, "Driver={SQL Server};Server=DBPC;Database=pubs;Uid=sa;Pwd=;")
' The query string is going to ask for all the Customer

' contacts whose telephone number matches the CLI of the active
Y call.

DataSetStr (2, "SELECT * FROM Customer WHERE Customer.Phone='" + [Digits] + "';")

' Now open the database..

ODBCOpen (1, [Datal], [DataZ2])

' Check to see if we got any results. If we didn't, we'll jump
' to the end of the macro

GotoIfNoRecords ("NoRecords", 1, 0)

' We got here, so we must have records. Now we'd process our

‘' database..

Page 53

Mitel MiContact Center Office SDK 6.2

NoRecords:
' Here after we just clean up after ourselves.
ODBCClose (1)

More examples of ODBC connection strings can be found later on in the reference information for ODBCOpen. You can also
contact the database supplier to find out information on the connection string needed. Typically the connection string specifies
the driver name to use, and then custom properties to define the location of the database.

Moving Between Records

Having opened the database, it is necessary to navigate the results. When you first open a database you are not always at a
particular record, so you must assert the record position.

You use the 0ODBCMove command to set the record position to either the beginning, end, or a given record number. You can
also use it to quickly advance to the previous or next record.

As well as being able to set the record position, you also need to be able to decide where in the list of results you currently are.
This is achieved with the [0ODBCPosn] macro variable. If the variable returns -1, you are after the last record; if it returns 0 you
are before the first record. In other words, checking for -1 means you cannot proceed any further forward, and checking for 0
means you cannot proceed any further back.

The following sample illustrates all the records in the results until it gets to the end of the records. It is assumed that the ODBC
connection has already been opened on ODBC channel 1.

' Move to the first record in the results

ODBCMove (1, 0, 0)

' Now process each record til we get to the end

' The following label will be used to define the start of

' processing that we will jump back to if more records

' are available.

ProcessRecords:

' Here we would perform an action on the current record

ODBCGetField (1, "Name", 1)

MessageBox ("The name is " + [Datal], 48, "Sample")

' Now we move to the next record

ODBCMove (1, 3, 0)

' Now check if we have reached the last record, and if we

' haven't, jump back to 'ProcessRecords' to process the next.

' Effectively, If [ODBCPosl] <> -1 Then Jump

GotoIfNumValue ("ProcessRecords", [ODBCPosl], -1, 1)

' If we reach here, we've processed all the records
Reading a Value

Having moved to a record you will probably want to read a value from that record. This is achieved using the ODBCGetField
command. The command reads a given field name from the current record, into the required [Datan] macro variable, where it
can subsequently be processed.

In the example in the previous section, the line ODBCGetField (1, “Name”, 1) reads the "Name" field from the current record
into the [Datal] variable.

Setting Values

You can also use the macro language to update fields in the current record. This is achieved using the ODBCSetFieldStr (to
update a string-based field) and ODBCSetFieldNum (to update a numerical field).

The following sample code shows a "Count" field being read, and then updated by incrementing it.
' Get the current value of "Count" into [Datall]
ODCBGetField (1, "Count", 11)
' Now store it back in "Count", but one greater

ODBCSetFieldNum(1l, "Count", [Datall] + 1)

Page 54

Technical Manual

Error Handling

The Callviewer macro language normally halts execution if an error occurs, and displays information about the error to the user.
This is generally a good idea when performing a keystroke macro, since ignoring an error could lead to keystrokes being sent to
the wrong application, and then all sorts of strange things could occur.

However, with ODBC, it is often better to allow the macro to check to see if an error was produced and then handle the error
itself. This is achieved using the SsetErrorsFatal command. By default, all commands that generate an error will halt macro
execution. However, by using the SetErrorsFatal command, this can be stopped.

Once fatal error handling is switched off, then it is up to the macro to check the [ErrorNum] and [ErrorDesc] macro variables
to decide if the last operation caused an error. The macro can then either fail (if the error was truly fatal), or perhaps work
around the error with some alternative code. This special error handling only applies to ODBC, DDE, and File handling
commands however.

The following sample code shows how error handling might be performed:
' Switch off error handling
SetErrorsFatal (0)
' Now try and update a field
ODBCSetFieldStr (1, "LastContactDate", [ShortDatel])
' If the [ErrorNum] value isn't 0, then an error occurred
' so jump to the ODBCError label.
GotoIfNumValue ("ODBCError", [ErrorNum], 0, 1)

' otherwise it was successful, and we can continue

ODBCError:
' If we got here, an ODBC error occurred

MessageBox ("Error: " + [ErrorDesc], 48, "Stop!")

Page 55

Mitel MiContact Center Office SDK 6.2

6.6.18 Other Alternatives

Other Alternatives

Driving third-party applications using keystrokes is relatively straight forward, but tends to only work if you can guarantee where
the user is in the application before the keystrokes are passed.

DDE can circumvent such issues, but obtaining information on DDE items and commands for an application can be quite
difficult.

ODBC can be a better alternative, but requires knowledge of the database being queried, and doesn't drive the application's
user interface, so can't be used to screen pop.

Another alternative is to use the OLE or COM interface for an application. This is a programmatic interface, similar to the
interface provided by the Link Control, which allows a script to drive the given application. Such interfaces are more readily
available than DDE information, but they do require that you use VBScript rather than the Macro Language, and they are too
involved to be considered in this documentation.

The table below suggests the most appropriate method of integration for several integration scenarios.

Application Integration Methods

Windows-based and DDE Use the SendKeys macro command where possible.

Supported Use DDE for special functionality that cannot be easily accessed using
keystrokes.

Windows-based, DDE Not Use the SendKeys macro command.

Supported

Windows-based, ODBC If ODBC is supported but not DDE, then use the ODBC support to process the

Supported database, but SendKeys or Automation may be required to drive the
application's user interface.

MS-DOS Or Console-based Use the SendKeysEx macro command.
If this method is unsuccessful, you might try “copying” the keystrokes to the
clipboard using the ClipboardSetText macro and “pasting” them into the
application using the MS-DOS/Console’s System menu.

OLE Automation-supported If the application supports OLE Automation or COM, then you might consider

Only writing a macro script using VBScript and the Link Control (although this is only
for the very experienced Software Developer).

Page 56

Technical Manual

6.7 Call Control With Actions
Call Control With Actions

The macro language is not just for screen popping, because there are a wide number of macro commands that can be used for
any sort of desktop automation. However, CallViewer does come with a large number of macro commands and variables
related to calls, meaning that it can be quite useful to create user actions that manipulate calls.

In version 4, CallViewer has built-in actions that can be easily assigned to a button, hot key, or rule. These built-in actions allow
a user to easily configure common call control features, such as making a call, or transferring a call. Whereas in earlier versions
of CallViewer the user would have needed to write a custom macro to do any call control, from version 4 onwards the user
should only need to create a user action to perform call control if they want to perform multiple call control commands, or wait
for user input before performing a given command.

Page 57

Mitel MiContact Center Office SDK 6.2

6.7.1 Which Extension?

Which Extension?

One facility that the macro commands provide that is not available using built-in actions in CallViewer is the ability to perform a
call control command at a given extension. Almost all of the call control macro commands take an extension as the first
parameter. If the first parameter is blank, the call control command will operate on the extension with which CallViewer is
associated, otherwise it will use the extension entered in the macro command.

The following example will place an outbound call at the default extension to " 14809619000 .”
CallMake (“”, “01293608200”, 1)

In contrast, the next example will place an outbound call at extension 400 to “ 14809619000 ,” regardless of whether this
CallViewer is associated with extension 400 or not.

CallMake (“4007, ™ 14809619000 ”, 1)

If the given extension is not in a position to make a call, both forms of the command would return an error and not continue.

Page 58

Technical Manual

6.7.2 Which Call?
Which Call?

Several of the macro commands that provide call control take a call index as a parameter. The call index is the 1-based index
of the calls that are active at the given extension. For example, if a call alerts at an extension and is answered, before a second
call alerts at the extension while queuing, the answered call is call index 1, and the alerting call is index 2. When the answered
call is terminated, the alerting call becomes the only call and so has an index of 1.

When performing call control commands at the extension that is associated with CallViewer , you can also use an index of “0,”
which causes the macro language to use the most suitable call at the extension.

For example, the following macro command will place the second call at this extension on hold:
CallHoldExclusive (Y, 2)

In the case of some macro commands, the command will find the most appropriate call index anyway. MiCC Office Server will
also perform similar checks, which is useful when performing call control at another extension.

Page 59

Mitel MiContact Center Office SDK 6.2

6.7.3 Blocking
Blocking

Macro commands are processed sequentially; the next macro command in the script will not be processed until the current
command is complete. Whereas most macro commands take affect locally, e.g., the SendKeys macro command emulates
keystrokes on the local computer, call control commands need to be passed to the , and ultimately on to the telephone system.
At the same time though, wants to display an error if the macro command is not correct.

The result of this is that a call control macro command will block the current action’s execution until it has received a response
from as to whether the command was successful or not. returns a failure response if it believes that the given macro command
is not applicable at the current time, e.g., requesting to answer a call when there are no calls at the given device. If returns
success, it means that the command has been passed to the telephone system for execution. This does not mean that the
related telephone system action has occurred yet however.

The following diagram indicates what information is passed between the three systems, and in an approximate order.

All of these events will occur very quickly, but comparatively, the time from receiving the call control request at the telephone
system and it being processed will potentially be the longest. This means that can be processing a subsequent macro
command before the telephone system has finished processing the first request.

Under normal circumstances this should not be a problem, however the following sample does give one example of when it
would.

CallMake (™7, “62514”, 0)

CallAnswer (“62514"7, 1)

The first line places a call from the default extension to an internal device, 62514. The second line answers the first call at
device 62514. Although macro execution will block until a response is received from the that the first command has been
successfully passed to the telephone system, the second command will be processed before the internal call to “62514” is
made. This means that the second command to answer a call at “62514” will fail, as no such call will exist at that moment in
time.

Because monitors calls at only one extension, there are only two options for fixing this problem:

e Use a Wait macro command to put a delay between the two macro commands. A delay of between 1 and 1.5 seconds
would be about right.

e Alternatively, alter the first line to make device 62514 call your extension, and then move the CallAnswer macro
command into a rule that fires when an internal call alerts your extension from device 62514. This second option would
not necessarily apply to any situation.

Page 60

6.7.4 Call Control Example

Call Control Example

Technical Manual

The following example prompts the user for an account code, which, having been entered is then set against the active call,

and then the call is ended.

' Ensure that we have at least one call at our device

GotoIfNoCalls (“GotACall”, 0, 1)

' There are no calls at all, so end
End

GotACall:

' Prompt the user for an account code to set against this

' call and store the result in [Datal]

w

InputBox (“Enter an account code”,

Callviewer ”, “, 1)

' If no account code was entered, end the macro

GotoIfStrLen (“GotAcCode”, [Datal], 1)

' Account code length was 0, so quit

End

GotAcCode:

' We have a valid account code - set it against the call

' via the telephone system

SetAccountCode (", 0, [Datal], 1)

' Rather than guess when the account code is set,

' we'll sit here and wait for it to update

DataSetNum (2, 20)
WaitForAcCodeLoop:
' Pause briefly
Wait (100)

' If the current Account Code = the Account Code user

' entered, then exit loop

GotoIfStrValue (“"AcCodeSet”, [AccountCode], [Datal], 0)

' Decrement Data2 variable so we don't spin here

' for too long

DataSetNum (2, [Data2] - 1)

' See if Data2 has reached 0 - if it has, we've timed out,

' and not set the A/C Code yet
GotoIfNumValue (“WaitForAcCodeLoop”,

[Dataz2], 0, 1)

' If we reach here it means that Data2 has reached 0

MessageBox (“Failed to set the account code”,

End
AcCodeSet:

' OK, we must have set the account code by now,

' so now we can end the call

CallDrop(“”, 0)

48, “ CallViewer

An interesting area of the example is the WaitForAcCodeLoop section. This loop waits 2 seconds for the account code to
change before allowing the code to continue. The loop starts by waiting for 100ms. It then checks the current account code,

Page 61

Mitel MiContact Center Office SDK 6.2

and if it's the account code entered by the user, will exit the loop. The [Data2] variable is used to limit the maximum number of
times the code will wait for the account code to change. It starts at 20, and is decremented each time by 1. If it has not reached
0, the loop returns to the top to wait for another 100ms, otherwise the code displays a message to say that it has timed out

waiting for the account code to change, and ends.

Page 62

Technical Manual

6.8 Advanced Topics

Advanced Topics

The following sections are intended for experienced users who want to further customize their CallViewer macros.

Page 63

Mitel MiContact Center Office SDK 6.2

6.8.1 Multitasking
Multitasking

Because Windows is a multitasking operating system, it will perform some tasks at the same time that user actions are running.
If your actions contain commands that invoke a task that will be performed in this way, you need to write the user actions to
ensure that the requested multitasking operations have been fully completed before the next part of your user action executes.

Under Windows 98/ME, the use of the YieldToOS macro command after a macro statement that requests a multitasking
operation is usually sufficient.

Under Windows 2000, or XP, you may have to write your action to use line labels and conditional branching (the “Goto” macro
statements) to test whether multitasking operations have been completed. A simpler solution can be to use the Wait macro
command to delay the action for a short period of time; however, this solution is not guaranteed to work on every installation
due to timing differences. For example a 50ms wait on the test computer may be sufficient, but on other computers a 100ms
wait may be required.

The following are operations that Windows performs in a multitasking fashion:
e Creating a window, whether this is the main application window, or a dialog.
e Starting applications (e.g., with the Shell macro command).
e Activating another window or application.
e Repainting the screen.
e Restoring, , or windows.

Note: Other features of an application could be performed in a multitasking manner, so if in doubt it is best to use YieldToOs
anyway.

Also: If you send keystrokes to an application using SendKeys or SendKeysEx, you should call YieldToOs afterwards if the
keystrokes would cause the application to perform one of the specified multitasking operations.

In earlier versions of it was not possible to have multiple macros running at the same time. One macro could call another
macro, such that multiple macros could be active, but the calling macro would wait for the called macro to complete before
continuing. In version 4 of this is no longer the case, and all user actions operate independently. This has certain ramifications:

The [Data1] to [Data11] macro variables are independent for each user action. If two actions are running concurrently then
each action will have its own values for these variables. Even if the same action runs twice at the same time, the variables will
still have their own values.

The [Data1] to [Data11] macro variables are always set to empty when an action instance starts, so there is no way of
preserving data between actions being run using these macro variables.

If you need to share information between instances of running actions, use the GlobalDataXXX set of macro commands.
These allow you to read and write to named properties that last for the duration that is running, and are shared between all
actions. This means that if action A sets a global property to “One,” and action B then sets the property to “Two,” both actions
will read the property as “Two.” Global properties are also protected so that if two actions were running simultaneously, access
to the property is automatically locked, so that two actions cannot try to simultaneously update the same property.

Page 64

Technical Manual

6.8.2 CallViewer as DDE Server

CallViewer as DDE Server

CallViewer can act as a DDE Server, as well as initiating DDE conversations with other DDE Servers. Because CallViewer acts
as a DDE Server, other applications can initiate DDE conversations with CallViewer to send it commands, and request
information about CallViewer .

CallViewer 's Application Name is “CALLVIEW,” supporting a single topic called “System.”

Because fewer modern applications provide a means of acting as a DDE Client, you may find it easier to drive CallViewer using
the CallViewer Link Control via VBScript.

Requesting Data From CallViewer

After a conversation with CallViewer has been started you can request the value of any CallViewer w macro variable, as
follows:

1. Set the “DataType” item to be the name of the macro variable you want to request, e.g., to request the [Digits] macro
variable, you would ‘poke’ the “DataType” item with the value “Digits”.

2. Request the “Data” item. This is automatically set to the contents of the macro variable that “DataType” is set to, when
the “DataType” item is set.

Sending Commands To CallViewer

A command is an instruction sent to an application in a DDE conversation. The command could be an instruction for the
application to perform an action such as opening a specified file.

When you use CallViewer as a DDE server, CallViewer accepts any valid native CallViewer macro command or even an entire
macro script as a DDE command. If you send an entire macro script to CallViewer using a DDE conversation, then each line of
the macro script must be separated by line feed (ANSI character 10) followed by carriage return (ANSI character 13).

After submitting a command, you can request the DDE items “ErrStr” or “ErrVal” to check the result.
e “ErrStr’ returns the textual description of the error that occurred for the last submitted command.

e “ErrVal” returns the error number of the error that occurred for the last submitted command. A value of “0” indicates that
the last command was successful. If the number is non-zero, then “ErrStr” can be requested to get a textual description
of the same error code.

See the Macro Commands topics in the Reference section for a list of macro commands that could be sent to CallViewer .

DDE Server Examples

The following are examples of using CallViewer as a DDE server from Microsoft Access using the Access Basic programming
language.

These are not examples of CallViewer 's own macro language.

Requesting The Value Of A Macro Variable

Dim 1Channel As Long

' Initiate DDE conversation with Callview.
1Channel = DDEInitiate(“Callview”, “System”)
' Set DataType item to be “Calls”

' Macro Variable Reference.

Page 65

Mitel MiContact Center Office SDK 6.2

DDEPoke 1lChannel, “DataType”, “Calls”
' Request it’s wvalue and show it in a
' Messagebox window.

MsgBox DDERequest (1Channel, “Data”)

!

Terminate all DDE conversations.

DDETerminateAll

Sending A Single Macro Command

Dim 1Channel As Long

' Initiate DDE conversation with Callview.
1Channel = DDEInitiate(“Callview”, “System”)

' Turn error handling off.

On Error Resume Next

' Send CallMake () command to Callview.
DDEExecute l1lChannel, “CallMake (”%“”™,”%“400”", 1)”
' If the command failed, then

' request the error values.

If Err <> 0 Then

Dim sErrVal As String

Dim sErrStr As String

sErrVal = DDERequest (1Channel, “ErrvVal”)
sErrStr = DDERequest (1Channel, “ErrStr”)
' Show error string in message window.
MsgBox sErrStr

End If

' Terminate all DDE conversations.

DDETerminateAll

Sending An Entire Macro Script

Dim 1Channel As Long

' Initiate DDE conversation with Callview.
1Channel = DDEInitiate(“Callview”, “System”)
' Build a 3 line macro script into

' a string variable.
Dim s As String

s = w

s = s & “CallMake (”“”“,”“400”%, 1)” & Chr(10) & Chr(13)

s = s & “Wait(2500)” & Chr(10) & Chr(13)

s = s & “CallDialDigits (”“”“, 0, ”“#200”%)” & Chr(10) & Chr(13)
' Turn error handling off.
On Error Resume Next

' Send macro script to Callview.
DDEExecute 1Channel, s

' If the command failed, then

' request the error values.

Page 66

If Not (0 = Err) Then

Dim sErrVal As String

Dim sErrStr As String

sErrvVal = DDERequest (1Channel, “ErrvVal”)
sErrStr = DDERequest (1Channel, “ErrStr”)
' Show error string in message window.
MsgBox sSErrStr

End If

' Terminate all DDE conversations.

DDETerminateAll

Page 67

Technical Manual

Mitel MiContact Center Office SDK 6.2

7 Link Control

CallViewer Link Control

The Callview Link control is an Active X control that can be used in Active X aware development environments to integrate a
custom application with a running instance of CallViewer . It can also be used in a VBScript user action that runs within
CallViewer .

The control provides various methods, properties and events to integrate an application with CallViewer . Some examples of
what you can achieve are as follows:

e Perform call control operations such as making a call, or changing the agent state of an agent.
e Find out information about the currently selected call, such as the telephone number, DID number, etc.

e Be notified of events occurring such as a new call alerting the associated CallViewer extension, or the forward state of
the device changing.

The Link control communicates with a running instance of CallViewer on the user’s desktop, and is therefore limited to
information and events related to the extension that CallViewer is associated with. Call control operations can be performed on
any device in the system, for example instructing CallViewer to transfer a call at another extension to voice mail.

Note: The Link Control topics explain how to use it and cover the properties, methods, and events that are supported. It does
not explain how to program in VBScript.

Page 68

Technical Manual

8 Adding the Control to your Application
Adding the Control to your Application

The control can be used with development environments that interface with ActiveX, such as Microsoft Visual Basic or Microsoft
Access. It can also be used in CallViewer VBScript macros.

Note: The Callview Link control can be used in Callviewer and Connection Assistant .
Microsoft Access

The control can be used with Microsoft Access 97 and above. A typical example of use would be to add the control to the form
where contact information is displayed, and then use events from the control to automatically locate the correct record in the
form when a call is answered at the user’s extension.

To add the control to your form, perform the following actions. The instructions here refer to Microsoft Access 2000, but the
principals will be the same for other versions of Access.

1. Open the relevant form in Design mode.

2. Click the More Controls button on the toolbox, and then choose Callview Link Control from the menu. If you cannot
find the entry in the menu, CallViewer might not be installed on your development computer.

3. Drag on your form where you want the control to be located. The control is invisible when your form is in “View” mode
for data entry, so the size and location of the control is irrelevant.

4. Name the control using the Properties window. Examples in this help assume that the control is given a name of
“axCallview”.

The control is now ready to use. The properties of the control are disabled when designing the form since they are only of use
when running the form since they represent information about the state of CallViewer or the current calls at the user’s
extension. Enter the Visual Basic editor in Microsoft Access and write the necessary code to perform the operations that you
require.

Microsoft Visual Basic

The control can be used with Microsoft Visual Basic 5 and above. A typical example of use would be to perform special routing
rules on calls that could not normally be performed with Intelligent Router , or to integrate CallViewer with a custom application
used by a company.

To add the control to your Visual Basic application, perform the following actions. The instructions here refer to Microsoft Visual
Basic 6, but the principals will be the same for other versions of Visual Basic.

1. Open the relevant form in Form mode.
2. From the Tools menu, choose Controls. In the dialog that appears, locate the Callview Link Control in the list. Place a
check mark next to the name, and then click OK.

The Callview Link Control is now available in your toolbox.

3. Select the control, and then drag on your form where you want the control to be located. The control is invisible at
runtime, so the size and location of the control is irrelevant.

4. Name the control using the Properties window. Examples in this help assume that the control is given a name of
“axCallview”.

The control is now ready to use.

Page 69

Mitel MiContact Center Office SDK 6.2

Using VBScript Inside CallViewer
CallViewer has the ability to run VBScript user actions created using the Macro Editor. In such a scenario, CallViewer
instantiates the Link control for use within the user action, allowing the control to be referenced using the Callview name.
For example, within a CallViewer VBScript macro, the user can make a call using the command:

Callview.CallMake “”, ™ 14809619000 ”, True

To create a VBScript macro in CallViewer :

1. Right-click the CallViewer traybar icon on the desktop, and choose Actions from the menu.

2. In the Action Manager click Add and select the User Macro option from the bottom of the menu.

3. In the macro editor, choose VBScript from the drop-down menu on the right of the toolbar.

You can now write the VBScript macro in the macro editor, and use the Link control methods and properties to interface
with CallViewer .

Note: You cannot use the Callview Link control events in a VBScript macro. However, the events directly relate to rule
types in the Rule Manager, and so it is recommended that a rule is used to fire off a macro, rather than use events in
the macro itself.

Tip: When in the macro editor, the Insert button on the toolbar displays a list of all Callview Link control methods and
properties, making it very easy to find the correct command and syntax that is required.

CallViewer has the ability to run VBScript user actions created using the Macro Editor. In such a scenario, CallViewer
instantiates the Link control for use within the user action, allowing the control to be referenced using the Callview
name.

For example, within a CallViewer VBScript macro, the user can make a call using the command:
Callview.CallMake ™7, ™ 14809619000 ”, True

To create a VBScript macro in CallViewer :

1. Right-click the CallViewer traybar icon on the desktop, and choose Actions from the menu.

2. In the Action Manager click Add and select the User Macro option from the bottom of the menu.

3. In the macro editor, choose VBScript from the drop-down menu on the right of the toolbar.

You can now write the VBScript macro in the macro editor, and use the Link control methods and properties to interface
with CallViewer .

Note: You cannot use the Callview Link control events in a VBScript macro. However, the events directly relate to rule
types in the Rule Manager, and so it is recommended that a rule is used to fire off a macro, rather than use events in
the macro itself.

Tip: When in the macro editor, the Insert button on the toolbar displays a list of all Callview Link control methods and
properties, making it very easy to find the correct command and syntax that is required.

Using VBScript Outside of CallViewer

You can also use VBScript with the Link control when calling from another VBScript-enabled application, e.g.,
CSCRIPT.EXE, Microsoft Office, etc. Unlike when using VBScript from within CallViewer , you will need to instantiate
your own instance of the control. The following code sample shows you how to instantiate the control yourself:

Dim objCallview

Page 70

Technical Manual

Set objCallView = CreateObject (“Callview.Link.1”)
You could then reference the object via the “objCallview” variable, e.g.:
objCallview.CallMake “”, ™ 14809619000 ", False
When you are finished you must de- initialize the object by setting it to Nothing as follows:
Set objCallview = Nothing
Note: You cannot use the Callview Link control events in a VBScript macro. Furthermore, when using VBScript outside
of CallViewer , you cannot use the Rule Manager’s rules to act as a workaround for the lack of events.

Also: If you find that you need events you should either use VBScript macros within CallViewer itself, or consider using
a full-blown programming environment to host the Callview Link control instead.

You can also use VBScript with the Link control when calling from another VBScript-enabled application, e.g.,
CSCRIPT.EXE, Microsoft Office, etc. Unlike when using VBScript from within CallViewer , you will need to instantiate
your own instance of the control. The following code sample shows you how to instantiate the control yourself:

Dim objCallview
Set objCallView = CreateObject (“Callview.Link.1”)
You could then reference the object via the “objCallview” variable, e.g.:
objCallview.CallMake “7, ™ 14809619000 ”, False
When you are finished you must de- initialize the object by setting it to Nothing as follows:
Set objCallview = Nothing
Note: You cannot use the Callview Link control events in a VBScript macro. Furthermore, when using VBScript outside
of CallViewer , you cannot use the Rule Manager’s rules to act as a workaround for the lack of events.

Also: If you find that you need events you should either use VBScript macros within CallViewer itself, or consider using
a full-blown programming environment to host the Callview Link control instead.

Page 71

Mitel MiContact Center Office SDK 6.2

9 Using the Control Introduction

Using the Control

This section provides information on how to get the best out of the control. Using the control in the manner described in this
section will optimize how your application communicates with CallViewer .

Page 72

Technical Manual

10 Using Methods
Methods

The vast majority of the methods provided by the Callview Link control are the same as the methods provided by the Macro
Language, e.g., both the macro language and the Link control have AppActivateLike commands and SendKeys commands.
This means that examples in can often be easily converted to VBScript.

For example, a macro that activated Notepad and typed the current call’s telephone number would look like:
AppActivatelLike “Untitled - Notepad”
YieldToOs
SendKeys “The phone number is ” + [Digits]

A similar macro in VBScript, would look like the following (it is assumed that the
macro has been written inside):

Callview.AppActivatelLike “Untitled - Notepad”
Callview.DoCommand “YieldToOs”

Callview.SendKeys “The phone number is ” + Callview.Digits

Although the Link control does not have a YieldToOs command itself, it can use the macro language’s command using the
DoCommand method.

There are some commands that are not necessary in the Link control, because VBScript has a means to do the command
already. An example of this would be any of the GotoXXX commands, which jump conditionally based on the outcome of a
comparison.

The following Macro excerpt checks the telephone number of the caller, and branches if the dial code is a particular value:
GotoIfStrValuelLeft (“LocalNumber”, [Digits], “01293”, 5, 0)
' Telephone number not local, end the macro
End
LocalNumber:
' Telephone number is local - output message
MsgBox “Local Number”
In VBScript, this would become:
If Left(Callview.Digits, 5) = “01293” Then
' Telephone number is local - output message
MsgBox “Local Number”
Else
' Telephone number not local
!

Do something else

End If

Information on all the methods provided by the Callview Link control can be found in the Reference section, Link Control
Methods topics .

Page 73

Mitel MiContact Center Office SDK 6.2

11 Using Properties

Using Properties

Similarly to methods, the Callview Link control’s properties are invariably identical to the variables available in the Macro
language, for example the [CTIServerName] macro variable is identical to the CTIServerName property.

However, it is very important to remember that when using the Link control, it is usually communicating from a different process
than the one that is running in, e.g., the Link control is being hosted by Microsoft Access, and so is a different process. This
means that requesting a property does not provide an immediate response. The busier that the computer and/or is, the longer it
will take for the property to be returned to the calling application.

This means that it is better to request a property once, and cache the result, then to keep on asking for the same property,
unless you know it has changed. For example:

Dim szNumber
' Store a copy of the current phone number
szNumber = Callview.Digits
' Display it

MsgBox szNumber
' Select a new call

Callview.CallSelect 3
' Display the phone number of call 3

MsgBox szNumber

The script does not do what it says it will do. Although the phone number has been cached in ‘szNumber,’ the last line is meant
to display the phone number for the third call, yet the phone number has not been recached. After the call to CallSelect, the
result of the Digits property will probably be different, so the information should have been cached again:

' Select a new call

Callview.CallSelect 3
szNumber = Callview.Digits
' Display the phone number of call 3

MsgBox szNumber

Information on all properties of the Link control can be found in the Reference section, Link Control Properties topics.

Page 74

Technical Manual

12 Using Events

Using Events

When you host the Callview Link control in another application, e.g., Microsoft Access, Visual Basic, etc., you can be notified of
events occurring in . Events are telephony based, i.e., they inform the control when the call or extension status changes, for the
extension that is associated with. So, for example, there are events to depict when a call starts alerting, when it is answered,
when it is held, and so on.

Each event provides several pieces of information in relation to what actually happened. For example call related events will
provide information on the call, including the telephone number, , etc.

Further information on events can be found in the Reference section, Link Control Events topics .

Note:To receive call events from the Link control, the Initialise method must be called to tell the control that the application
would like to receive Link control events. It is not necessary to call the Uninitialise method when your application terminates,
although it is good programming .

Using The Information Provided

It is recommended that you use the information passed in the event, rather than obtaining the same information via the control’s
properties. There are two reasons for this:

There could be more than one call at the associated extension, and the ActiveX control will return a call property for the
currently selected call within the call list if referenced by a property rather than using the event parameters. From an external
application's point of view this would be an arbitrary call, rather than the call that caused the event to fire. For example, for
account code capture, it is recommend that one uses the ExtAccountCodeEntered event procedure, as opposed to
specifically querying the AccountCode ActiveX control property.

The information against the event has already been provided. If you choose to query the control for further information, then
you have to wait for the information to be returned.

Avoiding Blocking

It's important to remember that when an event fires, is calling your code. This means that spending a long time doing
something inside an event is likely to delay ’s ability to process messages and so on. You could even potentially lock .

For example, say you wrote an application that processed the CallNew event, which fires when a call starts alerting your
extension. If you display a message box of some form in that event, the event cannot return execution to the calling application
until the message box is closed. This is going to delay other events from arriving at your application.

does not have this problem when it fires rules, because it allocates each rule its own thread when it needs to process an action.

Call

In a complex application of events it is recommended that events are used to build a local copy of the calls, rather than polling
the control for changes to call properties, since polling does not result in am immediate return of data requested.

A complex application would be one that needed to rely on matching up several events, and/or looking at several calls at once.
If you just needed to process one or two events and then perform a short script based on the information in the event itself,
building a local copy of the calls is overkill; using the information from the event works much better.

Note: When building a local copy of the calls, each call needs to be indexed by the distant end device (the device that the call
is connected to).

Page 75

Mitel MiContact Center Office SDK 6.2

13 Reference Introduction

Reference Introduction

This section provides reference information for the CallViewer Macro Language and the CallViewer Link Control.

Page 76

Technical Manual

14 Macro Commands Introduction

Macro Commands Introduction

The CallViewer macro language contains commands and variables, which are described in the following sections.
The Macro Commands section documents the commands that are available in the CallViewer Macro Language.

Page 77

Mitel MiContact Center Office SDK 6.2

14.1 ActivateApp
ActivateApp

This method restores and activates the application window that has the titlebar text matching the string specified in the
parameters. The match is performed using wildcards. The command also changes the focus to the named application window
and restores if if .

If a matching application is not found an error occurs.

Syntax:

ActivateApp(WindowTitle)

Parameter:

WindowTitle: The title of the application to activate. This string can contain wildcards, where an * represents 0 or more
characters, and a ? represents one character. For example, the Microsoft Outlook titlebar text could be matched with either
Example:

' Set the focus to Notepad.
ActivateApp (“* - Notepad”)
YieldToOS

Notes:

e |[f there is more than one instance of the given application, the operating environment arbitrarily selects the one to
activate.

e The command will cause an error if the window exists but is hidden. There are many application windows that are
always open under Windows but are not visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e This command replaces AppActivateLike and AppActivateLikeRight in version 4.1. These commands still exist,
though they may be deprecated in the future.

Page 78

Technical Manual

14.2 ActivateChild
ActivateChild

This method restores and activates the child window of an application. Both the application and the child window are identified
by specifying the titlebar text in the command's parameters. Wildcards can be used in the parameters The command also
changes the focus to the named child window and restores it if .

If a matching application is not found an error occurs.
Syntax:
ActivateChild(WindowTitle, ChildWindowTitle)

Parametesr:

e WindowTitle: The title of the application to activate. This string can contain wildcards, where an * represents 0 or more
characters, and a ? represents one character. For example, the Microsoft Outlook titlebar text could be matched with

e ChildWindowTitle: The title of the child window to activate. This string can contain wildcards, similar to the WindowTitle
parameter.

Example:

' Restore and activate a document in Microsoft Word.
ActivateChild (“*- Microsoft Word”,”documentl*”)
YielToOS

Notes:

e |If there is more than one instance of the application or child window, the operating environment arbitrarily selects the
one to activate.

e The command will cause an error if the application window exists but is hidden. There are many application windows
that are always open under Windows but are not visible. Examples are the NetDDE application window ("NetDDE") and
the clipboard server application ("ClipSrv").

e The command does not set the focus to the specified application window.

e This command replaces AppActivateLikeChild and AppActivateLikeRightChild in version 4.1. Although these other
commands still exist, they may be deprecated in the future.

Page 79

Mitel MiContact Center Office SDK 6.2

14.3 ActiveXScriptRun
ActiveXScriptRun

Runs an ActiveX script. The script can be a single line of an ActiveX script such as VBScript, or several lines together, each
separated by a carriage return and line feed.

Syntax:

ActiveXScriptRun(ScriptHostName, Script)

Parameters:

e ScriptHostName: The name of the ActiveX scripting engine that the script is written in, e.g., “VBScript.”

e Script: The script to execute. The script must still conform to the rules of the script engine. If it does not, the command
will return an error.

Example:

' Show a message box window using VBScript.

VAN)

ActiveXScriptRun (“WBScript”, “MsgBox ““Test”"“, 0, ”“ CallViewer

Notes:

You can write user actions in any ActiveX script, such as VBScript, without the need to use this method within the CallViewer
macro language. This can provide better performance, and may be easier if the length of the ActiveX scripts get reasonably

long.

Page 80

Technical Manual

14.4 AppActivateLastFoc

AppActivateLastFoc

Restores and activates the last application window to have the focus, other than CallViewer . The AppActivateLastFoc command
changes the focus to the application window and restores it if minimized .

Syntax:

AppActivateLastFoc(lgnorePopupWindows)

Parameter:

IgnorePopupWindows: This parameter controls whether the command only considers application windows when deciding which
window was last active. Valid settings are as follows:

Value

Description

Restores and activates the last window to have the focus, regardless of what type of window it is. Thi
option is not recommended.

Restores and activates the last application window to have the focus that meets one of the following
conditions:

e The application window is modal and has a double border that may have been created with or
without a title bar.

e The application window is not a popup window unless it is a modal dialog, as defined by its
window style.

Example:

' Activate the last application

' window to have the focus.

AppActivateLastFoc (1)

YieldToOS

Page 81

Mitel MiContact Center Office SDK 6.2

14.5 AppActivateLastFocCopyText
AppActivateLastFocCopyText

Restores and activates the last application window (other than CallViewer) to have the focus and copies the text that is selected within
it to the clipboard. The AppActivateLastFocCopyText command changes the focus to the application window and restores it if
minimized .

The method that is used to copy the text from the application is the one specified in the Go Dial Action setting on the Call Control tab of
the Options dialog.

Syntax:
AppActivateLastFocCopyText(IgnorePopupWindows)

Parameter:

IgnorePopupWindows: This parameter controls whether the command only considers application windows when deciding which
window was last active. Valid settings are as follows:

Value Description

0 Restores and activates the last window to have the focus, regardless of what type of window it is. Thi
option is not recommended.

1 Restores and activates the last application window to have the focus that meets one of the following
conditions:

e The application window is modal and has a double border that may have been created with or
without a title bar.

e The application window is not a popup window unless it is a modal dialog, as defined by its
window style.

Example:

' Activate the last application window to have
' the focus and copy the text that is selected.
AppActivateLastFocCopyText (1)

YieldToOS

Notes:

If you use this command in a user action, and then assign that action as the Go Dial Action, you will create an infinite loop when you try
to Go Dial.

Page 82

Technical Manual

14.6 AppActivateLike
AppActivateLike

This method restores and activates the application window that has the left part of its titlebar text matching the string specified
in the parameters. The command also changes the focus to the named application window and restores it if .

If a matching application is not found an error occurs.

Note: Starting with version 4.1, this command has been replaced with ActivateApp. This command may be deprecated in future
versions of the macro language.

Syntax:

AppActivateLike(WindowTitle)
Parameter:

WindowrTitle: The left part of the title of the window to activate. The name that appears in the titlebar need not be fully
specified. For instance “Calculat” would still activate an open application with titlebar text “Calculator’. The comparison is also
not case sensitive; i.e., “Calculator” and “calculator” appear identical.

Example:

' Set the focus to Notepad.
AppActivatelLike (“Untitled - Notepad”)
YieldToOS

Notes:

e If there is more than one instance of the given application, the operating environment arbitrarily selects the one to
activate.

e The command will cause an error if the window exists but is hidden. There are many application windows that are
always open under Windows but are not visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e |t may be more preferable to use the AppActivateLikeRight command instead of AppActivateLike in some
circumstances. Unlike AppActivateLike, the AppActivateLikeRight command can identify an application by matching
the right portion of its titlebar text instead of the left part.

Page 83

Mitel MiContact Center Office SDK 6.2

14.7 AppActivateLikeChild
AppActivateLikeChild

Restores and activates the child window of an application. Both the application and the child window are identified by specifying
the leftmost part of their titlebar text in the command’s parameters. The command also changes the focus to the named child
window and restores it if minimized .

If a matching application is not found an error occurs.

Note: Starting with version 4.1, this command has been replaced with ActivateChild. This command may be deprecated in
future versions of the macro language.

Syntax:

AppActivateLikeChild(WindowTitle, ChildWindowTitle)

Parameters:

e WindowTitle: The left part of the title of the application window to activate.
The name that appears in the titiebar need not be fully specified. For instance, “Calculat” would still activate an open

application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e ChildWindowTitle: The left part of the title of the child window within the given application window.

The name that appears in the titlebar need not be fully specified. For instance, “Exam” would still activate a child
window with titlebar text “Example.” The comparison is also case insensitive.

Example:

' Restore and activate a document in Microsoft Word.
AppActivatelLikeChild (“document 1 - Microsoft Word”,“documentl”)
YieldToOS

Notes:

e |[f there is more than one instance of the application or child window, the operating environment arbitrarily selects the
one to activate.

e The command will cause an error if the application window exists but is hidden. There are many application windows
that are always open under Windows but are not visible. Examples are the NetDDE application window (“NetDDE”) and
the clipboard server application (“ClipSrv”).

e The command does not set the focus to the specified application window.

Page 84

Technical Manual

14.8 AppActivateLikeRight
AppActivateLikeRight

Restores and activates the application window that has the right side of the titlebar text matching the string specified in the
parameters. The command also changes the focus to the named application window and restores it if minimized .

If a matching application is not found an error occurs.

Note: Starting with version 4.1, this command has been replaced with ActivateApp. This command may be deprecated in future
versions of the macro language.

Syntax:

AppActivateLikeRight(WindowTitle)

Parameter:

WindowrTitle: The rightmost part of the title of the application window to activate.

The name that appears in the titlebar need not be fully specified. For instance, “culator” would still activate an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear identical.

Example:

' Set the focus to Notepad by matching the right part
' of the titlebar text since Notepad’s titlebar shows
' “Untitled - Notepad”.

AppActivatelLikeRight (“Notepad”)

YieldToOS

Notes:

e |[f there is more than one instance of the application, the operating environment arbitrarily selects the one to activate.

e The command will cause an error if the window exists but is hidden. There are many application windows that are
always open under Windows but are not visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

Page 85

Mitel MiContact Center Office SDK 6.2

14.9 AppActivateLikeRightChild
AppActivateLikeRightChild

Restores and activates the child window of an application that has the left part of its titiebar text matching the string specified in
“the parameters. The application is identified by specifying the right part of its titlebar text in the parameters. The command also
changes the focus to the named child window and restores it if .

If a matching application is not found an error occurs.

Note: Starting with version 4.1, this command has been replaced with ActivateChild. This command may be deprecated in
future versions of the macro language.

Syntax:

AppActivateLikeRightChild(windowtitle, childwindowtitle)

Parameters:

o WindowTitle: The rightmost part of the title of the application window to activate.
The name that appears in the titiebar need not be fully specified. For instance, “culator” would still activate an open

application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e ChildWindowTitle: The left part of the title of the child window within the given application window.

The name that appears in the titlebar need not be fully specified. For instance, “Exam” would still activate a child
window with titlebar text “Example”. The comparison is also case insensitive.

Example:

' Restore and activate a document in Microsoft Word.
AppActivateLikeRightChild (“Word”, “Documentl”)
YieldToOS

Notes:

e |[f there is more than one instance of the application or child window, the operating environment arbitrarily selects the
one to activate.

e The command will cause an error if the specified application window exists but is hidden. There are many application
windows that are always open under Windows but are not visible. Examples are the NetDDE application window
(“NetDDE”) and the clipboard server application (“ClipSrv”).

e Unlike the AppActivateLikeRight command, the AppActivateLikeRightChild command does not set the focus to the
specified application window.

Page 86

Technical Manual

14.10 AppActivateLikeShell
AppActivateLikeShell

Restores and activates the application window that has the left part of its titlebar text matching the string specified in the
parameters. If no window can be found, then the command launches the filename specified in the parameters.

If the filename provided cannot be found, an error will occur.

Syntax:

AppActivateLikeShell(WindowTitle, Filename)

Parameters:

e WindowTitle: The left part of the title of the application window to activate.

The name that appears in the titiebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e Filename: The name of the filename to open if the given window cannot be found. Typically this will be an executable
file.

The filename provided will need to include the full pathname to the file location, unless the given file is in the list of paths
that Windows searches for executable files. This typically includes the current working directory, the Windows folder,
and the System or System32 folders.

Example:

' Set the focus to Notepad application if open already,
' but run NOTEPAD.EXE if the application is not open.
AppActivateLikeShell (“Untitled - Notepad”, “NOTEPAD.EXE”)
YieldToOS

Notes:

e |[f there is more than one instance of the application, the operating environment arbitrarily selects the one to activate.

e The command will cause an error if the window exists but is hidden. There are many application windows that are
always open under Windows but are not visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e |tis wise to place the YieldToOS command after the AppActivateLikeShell command. Since running applications
under Windows is a multitasking operation, a YieldToOS statement after these types of commands ensures that they
fully complete before execution passes to the remaining part of the macro script.

Page 87

Mitel MiContact Center Office SDK 6.2

14.11 AppCopyText
AppCopyText

Copies the text that is selected within the current active application to the clipboard. The method that is used to copy the text
from the application is the one specified in the Go Dial Action setting on the Call Control tab of the Options dialog.

Syntax:

AppCopyText

Parameters:

None.

Example:

' Activate the Notepad application window and copy the
' text that is selected within the current document.
AppActivatelike (“Untitled - Notepad”)

YieldToOS

' Copy selected text.

AppCopyText

Notes:

e If you use this command in a user action, and then assign that action as the Go Dial Action, you will create an infinite
loop when you try to Go Dial.

e You can use the AppCopyTextEx command instead of AppCopyText which copies the selected text in the active
application but uses a method to copy the text that you specify.

Page 88

Technical Manual

14.12 AppCopyTextEx
AppCopyTextEx

Copies the text that is selected within the current active application to the clipboard using a specific method to copy the selected text.

Syntax:

AppCopyTextEx(CopyMethod, CustomKeystrokes)

Parameters:

e CopyMethod: A numerical value which specifies the method that is used to copy the text. It can be one of the following values:

Value Method Description

0 Send WM_COPY Sends the Windows WM_COPY message to the control that has the inpt
focus. The success of this method is dependent on the application being
used.

1 Send Ctrl-C Simulates pressing the Control and C keys in the active application. This
the recommended method, as almost all applications support such a
keystroke.

2 Send Ctrl-Insert Simulates pressing the Control and Insert keys in the active application.

will often work when the Send Ctrl-C option does not.

3 Custom keystrokes Simulates pressing the keystrokes specified in the second parameter to t
command.
4 Send WM_GETTEXT Sends the Windows WM_GETTEXT message to the control that has the

input focus. This gets all the text in the given control, but success is
dependent on the application being used.

e CustomKeystrokes: This setting denotes the custom keystrokes to send to the active application when using option 3 in the
“CopyMethod” parameter. The format of the keystrokes is defined in the SendKeys command.

Example:

' Activate the Notepad application window and copy the
' text that is selected within the current document.
AppActivateLike (“Untitled - Notepad”)

YieldToOS

' Copy selected text using the Ctrl-c method.

w u)

AppCopyTextEx (1,

Page 89

Mitel MiContact Center Office SDK 6.2

14.13 AppWindowHide
AppWindowHide

Hides the given application window, identified by the leftmost part of the window’s titlebar text.

If the window cannot be found, an error occurs.
Syntax:
AppWindowHide(WindowTitle)

Parameter:

WindowrTitle: The left part of the title of the application window to hide.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear identical.

Example:

' Hide the Notepad window.
AppWindowHide (“Untitled - Notepad”)
YieldToOS

Notes:

e |[f there is more than one instance of the application, then the operating environment arbitrarily selects one.

e You must use the AppWindowHide command with caution especially if you want to hide the window itself. If your
action does not show the window again using the AppWindowShow command, you may have to restart Windows in
order to use because it will have completely disappeared off your desktop.

Page 90

Technical Manual

14.14 AppWindowMode
AppWindowMode

Restores, minimizes , or maximizes the application window, identified by the leftmost part of the window’s titlebar text.
Syntax:
AppWindowMode(WindowTitle, Mode)

Parameters:

o WindowTitle: The left part of the title of the application window to affect.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear identical.

e Mode: A numerical value that specifies what action to take on the given window, as follows:

Value Action
0 Restore the window
1 Minimize the window
2 Maximize the window
3 Size the window to its normal size
Example:

' minimize Notepad.
AppWindowMode (“Untitled - Notepad”, 1)
YieldToOS

Page 91

Mitel MiContact Center Office SDK 6.2

14.15 AppWindowMoveTo
AppWindowMoveTo

Moves the application window to a given position on the screen.

Syntax:

AppWindowMoveTo(WindowTitle, Xpos, Ypos)

Parameters:

e WindowrTitle: The left part of the title of the application window to affect.

e The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e Xpos: The horizontal position of the leftmost edge of the given window to move the window to. This is measured in
pixels. A valid range for this value depends on the current screen resolution being used.

e Ypos: The vertical position of the topmost edge of the given window to move the window to. This is measured in pixels.
A valid range for this value depends on the current screen resolution being used.

Example:

' Move the Notepad window to the co-ordinates

' 100, 100 on the desktop.

AppWindowMoveTo (“Untitled - Notepad”, 100, 100)
YieldToOS

Notes:
If you specify an Xpos that is greater than the screen width, or a Ypos that is greater than the screen height, you will move the

given window off the screen altogether, which may make it difficult for the user to return the window to a visible portion of the
screen.

Page 92

Technical Manual

14.16 AppWindowSetOrder
AppWindowSetOrder

Changes the order of a window relative to other windows. This is used to bring a particular window to the top of all windows, or move it

behind other windows.

Syntax:

AppWindowSetOrder(WindowTitle, Order)

Parameters:

e WindowTitle: The left part of the title of the application window to change the order of.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open application
with titlebar text “Calculator.” The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear identical.

e Order: A numerical value that depicts how the window order for the given window should change. It can be one of the following

values:
Value Action
0 Place the window above all other windows. Any windows that are defined as “always on top” will rer
above this window.
1 Place the window behind all windows. If the window is set to always stay on top of all windows, ther
setting is revoked.
-1 Place the window above all other windows, and sets it so that it will stay on top of all windows.
-2 Revokes the setting for this window to always stay on top of all windows, without affecting its positic
the window order.
Example:

' Make the Notepad window “always on top”.

AppWindowSetOrder (“Untitled - Notepad”, -1)

YieldToOS

Page 93

Mitel MiContact Center Office SDK 6.2

14.17 AppWindowShow
AppWindowShow

Shows the given application window, identified by the leftmost part of the window’s titlebar text.
If the window cannot be found, then an error is generated.

Syntax:
AppWindowShow(WindowTitle)
Parameter:

WindowTitle: The left part of the title of the application window to show.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear identical.

Example:

' Show the Notepad window.
AppWindowShow (“Untitled - Notepad”)
YieldToOS

Notes:

e This command would usually be used to “unhide” a window that had been hidden with AppWindowHide.

e If there is more than one instance of the application, the operating environment arbitrarily selects one.

Page 94

14.18 Beep
Beep

Sounds a tone through the computer’s speaker.

Syntax:

Beep

Parameters:

None.

Example:

Beep

Notes:

The frequency and duration of the beep depends on hardware, which may vary among different computers.

Page 95

Technical Manual

Mitel MiContact Center Office SDK 6.2

14.19 CallAnswer

CallAnswer

This command answers an alerting call at the given extension.

If there is no alerting call at the specified extension or the extension device is in a state that cannot facilitate answering a call,
an error occurs.

Syntax:

CallAnswer(Extension, Callltem)

Parameters:

e Extension: The extension device to answer the call at. If a blank string is specified, then the extension assigned to the
running instance of t will be used.

e Callltem: The index of the call to answer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically answer the first alerting call that it finds against the given
extension. In fact, if the call specified in this argument is not alerting the given extension, then the next alerting call is
answered instead.

Example:

' Make a call from a specified extension to the current
' extension so that if the specified extension is

' in divert (forward), you can still immediately

' connect to it

' Obtain the distant extension from the user.

A

InputBox (“Enter extension “Connect To”, “, 1)
' End macro if nothing was entered.
ExitMacroStrValue ([Datal]l, “7, 1)

' Make the call from the extension entered to your
' extension.

CallMake ([Datal], [LocalExtension], 1)

Wait (300) ' Wait for the call to be set-up.

' Auto answer the call at your extension.

CallAnswer (™, 0)

Notes:

e You can find out whether it is possible to answer a call at your extension by interrogating the value of the
[CanCallAnswer] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 96

Technical Manual

14.20 CallConference

CallConference

This command allows you to conference calls together at the given device, using the following rules:

If the calls at your extension are answered or already being conferenced, the CallConference command places the current
calls on hold and prompts you to enter in the extension or telephone number of another party.

If there are held calls at your extension, the CallConference command joins all the calls together into a conference.

If the given extension device is in a state that cannot facilitate the conferencing of calls (or adding a new conference party), an
error occurs.

Syntax:

CallConference(Extension)

Parameter:

Extension: The extension device to conference calls at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

Example:

' Places the current call on hold and invokes
' the Add Party window to dial a new number.
CallConference (V)

' Wait for the new call to be created.

Wait (500)

' Join the new call and the existing call

' together in a conference.

CallConference (M)

Notes:

You can find out whether it is possible to conference calls at your extension by interrogating the value of the [CanCallConf]
macro variable.

You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

The maximum number of parties that may be joined together in a conference will depend on the telephone system that the is
connected to. The maximum number of parties specified usually includes the device that you are calling from, thus the
maximum number of calls you may conference together with yourself is often 1 less than the number actually specified. Refer to
your telephone system documentation to obtain conferencing party limitations.

Page 97

Mitel MiContact Center Office SDK 6.2

14.21 CallDialDigits
CallDialDigits

This command dials the specified digits over an existing call at the given extension.
If there is no answered call at the specified extension or the extension device is in a state that cannot facilitate digits, an error occurs.

Syntax:

CallDialDigits(Extension, Callltem, Digits)

Parameters:

e Extension: The extension device to dial the digits at. If a blank string is specified, the extension assigned to the running
instance of will be used.

e Callltem: The index of the call to dial digits on. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically dial digits on the first answered call that it finds against the given extension.

In fact, if the call specified is not in the answered state at the given extension, the next answered call is used instead.

Example:

' Make a call to the voice mail group.
CallMake (%7, “4007, 1)

' Wait for the call to be answered.
Wait (2500)

' Enter the voice box of the local extension.
CallDialDigits(“”, 0, “#” + [LocalExtension])
' Obtain the password from the user.

InputBox (“Enter password”, “Voice Mail”, “”, 1)
' End macro if nothing was entered.
ExitMacroStrValue ([Datal], “7, 1)

' Dial the password to the voice mail.

CallDialDigits(“”, 0, [Datall)

Notes:

e You can find out whether it is possible to dial digits at your extension by interrogating the value of the [CanCallDialDig] macro
variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 98

Technical Manual

14.22 CallDialDigitsinput
CallDialDigitsInput

This command displays an input box so that the user can enter in digits that they want to dial over an existing call. A default value can
be specified which is initially shown in the input box.

If there is no answered call at the specified extension or the extension device is in a state that cannot facilitate dialing digits, an error
occurs.

Syntax:

CallDialDigitsInput(Extension, Callltem, DefaultDigits)

Parameters:

e Extension: The extension device to dial the digits at. If a blank string is specified, the extension assigned to the running
instance of CallViewer will be used.

e Callltem: The index of the call to dial digits on. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct CallViewer to automatically dial digits on the first answered call that it finds against the given
extension.

In fact, if the call specified is not in the answered state at the given extension, the next answered call is used instead.

e Digits : The digits to dial on the specified call. Some characters have a special meaning:

Character Meaning

! This character can precede a feature code. By dialing features codes you can simulate
extension feature being “accessed” on a station device. You can usually do this even w
the [CanCallDialDig] macro variable returns a value that indicates that dialing digits o
is unavailable. See your extension manual for a list of default feature code values.

P Pause

F Hookflash

e : The digits to dial on the specified call. Some characters have a special meaning depending on the telephone system that the
Callview Gateway is connecting to.

Page 99

Mitel MiContact Center Office SDK 6.2

14.23 CallDrop
CallDrop

This command ends a call at the given extension. The call must be an outbound external call, or answered.

If there is no external outbound or answered call at the specified extension, or the extension device is in a state that cannot
facilitate dropping a call, an error occurs.

Syntax:
CallDrop(Extension, Callltem)

Parameters:

e Extension: The extension device to end the call at. If a blank string is specified, the extension assigned to the running
instance of will be used.

e Callltem: The index of the call to end. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically drop the first call at the given extension that is outbound external or
answered.

In fact if the call specified at the given extension is not an outbound external call, or answered, the first such call at the
extension is used instead.

Example:

' Drops the first call at your extension.

CallDrop(“”, 1)

Notes:

e You can find out whether it is possible to end a call at your extension by interrogating the value of the [CanCallDrop]
macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 100

Technical Manual

14.24 CallDropAll
CallDropAll

This command ends all unheld calls at the given extension. It also places the device in an “on hook” state.

If the extension device is in a state that cannot facilitate ending calls, an error occurs.
Syntax:
CallDropAll(Extension)

Parameter:

Extension: The extension device to end all calls at. If a blank string is specified, then the extension assigned to the running
instance of will be used.

Example:

' Drops all the calls at your extension.

CallDropAll (M)

Notes:

e You can find out whether it is possible to end all calls at your extension by interrogating the value of the
[CanCallDropAll]l macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 101

Mitel MiContact Center Office SDK 6.2

14.25 CallHoldEXxclusive

CallHoldExclusive

This command exclusively holds an external outbound or answered call at the given extension.

If there is no external outbound call or call in the answered state at the specified extension, or the extension device is in a state
that cannot facilitate exclusively holding a call, then an error occurs.

Syntax:

CallHoldExclusive(Extension, Callltem)

Parameters:

e Extension: The extension device to exclusively hold the call at. If a blank string is specified, then the extension
assigned to the running instance of will be used.

e Callltem: The index of the call to hold. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically hold the first call at the given extension that is outbound external or
answered.

In fact, if the call specified at the given extension is not an outbound external call, or answered, the next call at the
extension is used instead.

Example:

' This macro performs the equivalent to the

' CallTransfer macro by placing the current

' call on hold and making a consultation call.
|l

' Get the user to enter the party to call.

InputBox (“Enter party :

”, “Transfer”, “, 1)
' End the macro if nothing was entered.
ExitMacroStrValue ([Datal]l, “7, 1)

' Exclusively hold the current call.
CallHoldExclusive (", 0)

' Wait for the call to be held

Wait (400)

' Make the call to the new party.

CallMake (%", [Datal]l, 1)

Notes:

e You can find out whether it is possible to exclusively hold a call at your extension by interrogating the value of the
[CanCallHoldEx] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 102

Technical Manual

14.26 CallHoldSystem
CallHoldSystem

This command system holds (parks) an external outbound or answered call at the given extension.

If there is no external outbound call or call in the answered state at the given extension, or the extension device is in state that
cannot facilitate placing a call on system hold, an error occurs.

Syntax:
CallHoldSystem(Extension, Callltem)

Parameters:

e Extension: The extension device to system hold (park) the call at. If a blank string is specified, then the extension
assigned to the running instance of will be used.

e Callltem: The index of the call to hold. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically hold the first call at the given extension that is outbound external or
answered.

In fact, if the call specified at the given extension is not an outbound external call, or answered, the next call at the
extension is used instead.

Example:

' System hold (park) the current call.
CallHoldSystem (™", 0)

Notes:

e You can find out whether it is possible to system hold a call at your extension by interrogating the value of the
[CanCallHoldSys] macro variable reference.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 103

Mitel MiContact Center Office SDK 6.2

14.27 CallMake
CallMake

This command makes a new call at the given extension.
If the device is in a state that cannot facilitate making a call, an error occurs.

Syntax:
CallMake(Extension, DialString, AutoPrefix)

Parameters:

e Extension: The extension device to make a new call at. If a blank string is specified, the extension assigned to the running
instance of CallViewer will be used.

e DialString: The telephone number to dial.
e AutoPrefix: This is a numerical argument that when set to “0” dials the digits exactly as entered in the “DialString” parameter.

When this value is set to “1”, the number to be dialed is affected by the dial rules configured within CallViewer . At a minimum this
means that the outbound dial prefix will be included in the digits sent to the telephone system.

Example:

' Get the number to dial from the user.
InputBox (“Enter number :”,%“Dial”,“”, 1)
' Make a call using the number.

CallMake (“”, [Datal], 1)

Notes:

The following characters within the “DialString” argument have a special meaning::

Character Meaning

! This character can precede a feature code. By dialing features codes you can simulate an extens
feature being “accessed” on a station device. You can usually do this even when the [CanCallDi
] macro variable returns a value that indicates that dialing digits on line is unavailable. See your
extension manual for a list of default feature code values.

P Pause

F Hookflash

Page 104

Technical Manual

14.28 CallMakeAppActivelLast
CallMakeAppActiveLast

This command performs the same operation as the “Go Dial” action within . It “grabs” a telephone number or e-mail address
from the last active application, and then either dials the telephone number, or creates a blank e-mail in the default e-mail
application, addressed to the given e-mail address.

The command also changes the focus to the last active application window, and restores it if .
Syntax:

CallMakeAppActiveLast(lgnorePopupWindows)

Parameter:

IgnorePopupWindows: This parameter controls whether the command considers only application windows when deciding
which window was last active. Valid settings are as follows:

Value Description

0 Restores and activates the last window to have the focus, regardless of what type of window it is.
This option is not recommended.

1 Restores and activates the last application window to have the focus that meets one of the
following conditions:

e The application window is modal and has a double border that may have been created with
or without a title bar.

e The application window is not a popup window unless it is a modal dialog, as defined by its
window style.

Example:

' Go Dial.
CallMakeAppActivelast (1)

Notes:

e You must not put the CallMakeAppActiveLast command in a user action and then assign the same action as the Go
Dial Action in the Call Control tab of the Options dialog, otherwise the user action will continuously attempt to call itself.

e You can find out whether it is possible to make a new call at your extension by interrogating the value of the
[CanCallDial] macro variable.

Page 105

Mitel MiContact Center Office SDK 6.2

14.29 CallMakelnput
CallMakelnput

This command shows an input box in which the user enters a telephone number to be . A default value can be specified which
is initially shown in the input box.

If the extension device is in a state that cannot facilitate making a call, an error occurs.
Syntax:
CallMakelnput(Extension, DefaultDialStr, AutoPrefix)

Parameters:

e Extension: The extension device to make a new call at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

e DialString: The telephone number to dial to display by default in the input box.

e AutoPrefix: This is a numerical argument that when set to “0” dials the digits exactly as entered in the input box by the
user.

When this value is set to “1”, the number to be is affected by the dial rules configured within . At a minimum this means
that the outbound dial prefix will be included in the digits sent to the telephone system.

Example:

' Prompt the user to make a new call.
' The initial default is set blank.
CallMakeInput (", “, 1)

Notes:

e See the CallMake command for information on special characters that can be entered in the number to be , depending
on telephone system.

e You can find out whether it is possible to make a new call at your extension by interrogating the value of the
[CanCallDial] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 106

Technical Manual

14.30 CallMonitor
CallMonitor

This command monitors, at a specified device, an external trunk line call active on the given extension.

If an external answered trunk line call does not exist at the extension device depicted by the value in the “exttarget” argument,
the CallMonitor macro statement will generate an error.

Syntax:

CallMonitor(Extension, ExtTarget, MonitorType)

Parameters:

e Extension: The extension device of the supervisor who will monitor the target call. If this is a blank string, the target call
will be monitored at the extension currently assigned to .

e ExtTarget: The extension where the external trunk line call is active. This call at this device will be monitored using the
monitor type specified in the “MonitorType” parameter.

e MonitorType: This numerical value defines the type of monitoring to perform, as follows:

Value Description

0 Silent Monitor: This allows an agent group supervisor to listen in on an agent’s conversation from
the supervisor extension. No indication is made to the agent or extension that is being monitored
unless specified in the telephone system’s programming.

Example:

' Silent monitor the active call at extension
' 210 from Supervisor extension 200.

CallMonitor (%2007, “210”, 0)

Notes:

e ertain or all types of call monitoring capability may be disabled on the telephone system due to local bylaws or
regulations, etc.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 107

Mitel MiContact Center Office SDK 6.2

14.31 CallPage
CallPage

This command performs a page to the specified page group from the given extension.
If the extension device is in a state that cannot facilitate making a call, an error occurs. Alternatively, another device may be
calling the same page group in which case an error may also occur depending on the telephone system in use.

Syntax:

CallPage(Extension, PageGroup)

Parameters:

e Extension: The extension device to perform the page from. If this is a blank string, the page will be performed at the
extension currently assigned to .

e PageGroup: The group to be paged.

Example:

' Page from current extension
' to page group 10.
CallPage (“”,“10")

Notes:

e You can find out whether it is possible to make a call from your extension by interrogating the value of the [CanCallDial]
macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 108

Technical Manual

14.32 CallPickup
CallPickup

This command picks up a call that is camped-on (queued) or alerting at a target device on the given extension.
If the extension device is in a state that cannot facilitate making a call, then an error occurs. If there are no calls alerting or
camped-on to the device specified then no errors will be generated and the pickup request is ignored.

Syntax:

CallPickup(Extension, AlertingDevice)

Parameters:

e Extension: The extension device to perform to pickup the call at. If this is a blank string, the call will be picked up at the
extension currently assigned to .

e AlertingDevice: The extension that has a queued or alerting call that is to be picked up at the “Extension” device.

Example:

' Pick up the first call that is
' alerting or camped-on extension 1000.

CallPickup (“”,%“1000")

Notes:

e You can find out whether it is possible to make a call from your extension by interrogating the value of the [CanCallDial]
macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 109

Mitel MiContact Center Office SDK 6.2

14.33 CallRecord
CallRecord

This command records an external trunk line call at the given extension. The call is recorded into the voice mailbox specified in
the command’s parameters.

If an external answered trunk line call does not exist at the extension device specified, the command will generate an error.

Syntax:

CallRecord(ExtTarget, Callltem, Mailbox)

Parameters:

e ExtTarget: The extension device that has the active call to be recorded. If this is a blank string, the call will be recorded
at the extension currently assigned to .

e Callltem: The index of the call to record. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically record the first external trunk line call at the given extension.

In fact, if the call specified at the given extension is not an external trunk line call, the next call at the extension that is an
external trunk line call is used instead.

o Mailbox: The voice mailbox that the call should be recorded to.

Example:

' Record the call at extension 200 to
' Voice Mailbox 201.
CallRecord(“200”, 0, “201”)

Notes:

e The “Mailbox” argument is completely ignored when the target extension’s Voice Mail Information setting “User-Keyed
Mailbox” is disabled in the telephone system’s programming.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 110

Technical Manual

14.34 CallRetrieve

CallRetrieve

This command retrieves an exclusively held call at the given extension.

If there is no exclusively held call at the specified extension or the extension device is in a state that cannot facilitate retrieving a
held call, then an error occurs.

Syntax:

CallRetrieve(Extension, Callltem)

Parameters:

e Extension: The extension device that has the held call to be retrieved. If this is a blank string, then the call will be
recorded at the extension currently assigned to .

e Callltem: The index of the call to retrieve. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically retrieve the first exclusively held call at the given extension.

In fact, if the call specified at the given extension is not an exclusively held call, then an error is generated.

Example:

' Retrieve a call from exclusive
' hold at the current extension.

CallRetrieve (“, 0)

Notes:

e You can find out whether it is possible to retrieve an exclusively held call at your extension by interrogating the value of
the [CanCallRetrieve] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 111

Mitel MiContact Center Office SDK 6.2

14.35 CallSelect
CallSelect

This command highlights the given call in the active call list window of . The selected call is used to decide which call’s
information is returned when referring to call related macro variables

Syntax:

CallSelect(Callltem)

Parameter:

Callltem: The index of the call to select, where 1 represents the first call in the list, 2 represents the second call, and so on.
Specifying a call item of 0 will remove any selection from the call list.

Example:

' Select the first call in the call list
CallSelect (1)

Notes:

e If you use this command in a user action that is fired because of a rule, the call specific macro variables will reflect the
information from the new selected call once this command has been called. However, the [CallSource] macro variable
will remain equal to the original call that caused the rule to fire. The [CallSelected] macro variable will take the value of
the new selected call in the call list.

e You usually need to use the CallSelect command when you have written an action that makes a new call and you need
to refer to information relating to the new call in the same action (for example, by using macro variables or macro
commands such as the ExitMacrolfCallType or GotolfCallType macro commands).

e Some of the “Look and Feels” in do not have an active call list window. In such a scenario, the selected call is still
changed, but there will be no change in the user interface.

Page 112

Technical Manual

14.36 CallTransfer

CallTransfer

This command places the given call that is currently in the answered state on exclusive hold, before making a new
announcement call to the given telephone number.

If the extension device is in a state that cannot facilitate initiating a call transfer, an error occurs.

Syntax:

CallTransfer(Extension, DialString, AutoPrefix)

Parameters:

e Extension: The extension to perform the transfer at. If the extension is a blank string, then the device currently
associated with is used instead.

e DialString: The telephone number to make the announcement call to. If this is a blank string then the user will be
prompted for the number to transfer to.

e AutoPrefix: This is a numerical argument that when set to “0” dials the digits exactly as entered in the “DialString”
parameter.

When this value is set to “1”, the number to be is affected by the dial rules configured within . At a minimum this means
that the outbound dial prefix will be included in the digits sent to the telephone system (if the telephone number appears
to be external).

Example:

' Get the number to dial from the user.
InputBox (“Enter number :”,“Transfer”,“”, 1)
' End macro if nothing was entered.
ExitMacroStrValue ([Datal]l, “7, 1)

' Exclusively hold the current call and

' make a new call using the number entered.

CallTransfer (%, [Datal], 1)

Notes:

e You can find out whether it is possible to initiate a call transfer at your extension by interrogating the value of the
[CanCallTrans] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 113

Mitel MiContact Center Office SDK 6.2

14.37 CallTransferComplete

CallTransferComplete

This command completes a call transfer at the given extension. For the command to be able to work there must already be the
call-to-transfer on exclusive hold at the specified extension. There must also be a previously set up consultation call that is in
the answered state. The command transfers the specified held call to the party at the distant end of the currently answered
consultation call.

If the extension device is in a state that cannot facilitate completing a call transfer, an error occurs.
Syntax:
CallTransferComplete(Extension, Callltem)

Parameters:

e Extension: The extension device that has the consultation call to be completed. If this is a blank string, then the
transfer will be completed at the extension currently assigned to.

e Callltem: The index of the held call to transfer to the answered consultation call. Calls in the list are identified as 1 for
the first call in the call list, 2 for the second call etc. A value of 0 will instruct to automatically transfer the first held call at
the given extension.

Example:

' Complete a call transfer at the current

' extension.

CallTransferComplete (“”, 0)

Notes:

e You can find out whether it is possible to complete a call transfer at your extension by interrogating the value of the
[CanCallTransComp] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 114

Technical Manual

14.38 CallTransRedir

CallTransRedircmd

This command performs a blind (direct) transfer of an answered or alerting call at the given device to another party. The
command prompts the user for the party to transfer the call to.

If there is no moveable call at the specified extension, or the extension device is in a state that cannot facilitate transferring or
redirecting a call, an error occurs.

Syntax:

CallTransRedir(Extension, Callltem)

Parameters:

e Extension: The extension device that has the call to be blind transferred. If this is a blank string, the transfer will be
performed at the extension currently assigned to .

e Callltem: The index of the call to blind transfer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically transfer the first alerting, answered, or external outbound call
at the given extension.

Example:

' Directly transfer or redirect the first call
' item (answered or alerting).

' The user will automatically be prompted for
' the party to transfer/redirect the call to.
CallTransRedir (™7, 1)

Notes:

e When the user enters in the number of another party to move the call to, they do not need to specify the outbound dial
prefix or long distance dial code at the beginning of the target party's dial string. These are automatically added to the
beginning of the dial string using the rules contained within .

e You can find out whether it is possible to move a call at your extension by interrogating the value of the
[CanCallTransRedir] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 115

Mitel MiContact Center Office SDK 6.2

14.39 CallTransRedirDirect
CallTransRedirDirect

This command performs a blind (direct) transfer of an answered or alerting call at the given device to another party specified in
the command’s parameters.

If the given call is alerting, it will be redirected to the specified party. If the call is answered, it will be blind transferred. The call
always alerts the party that it is transferred to immediately after the command is completed.

If there is no moveable call at the specified extension, or the extension device is in a state that cannot facilitate transferring or
redirecting a call, then an error occurs.

Syntax:

CallTransRedirDirect(Extension, Callltem, DialString)

Parameters:

e Extension: The extension device that has the call to be blind transferred. If this is a blank string, then the transfer will
be performed at the extension currently assigned to .

e Callltem: The index of the call to blind transfer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically transfer the first alerting, answered, or external outbound call
at the given extension.

e DialString: The number of the party to transfer the call to.

Example:

' Redirects the currently selected call to a specific device.

CallTransRedirDirect (“”, [CallSelected], “20000")

Notes:

e The number of the party specified in the “DialString” argument does not need to include the outbound dial prefix or long
distance dial code. These are automatically added to the beginning of the number using the dial rules contained in .

e You can find out whether it is possible to move a call at your extension by interrogating the value of the
[CanCallTransRedir] macro variable.

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable.

Page 116

Technical Manual

14.40 ClipboardAppendText
ClipboardAppendText

This command adds the given text to the end of the current Windows clipboard.

For example, if the clipboard contained *’, and this command was called with “ Developer SDK” as the parameter, the clipboard
would contain “ Developer SDK” after the command had completed.

Syntax:

ClipboardAppendText(Text)

Parameter:

Text: The text to append to the current clipboard contents.

Example:

' Append line number of current
' call to the clipboard text.
ClipboardAppendText (“Line : ” + [Line])

Notes:

e |[f the clipboard contains a non-text based format prior to the command being called, the clipboard will be cleared, and
the given text stored in it instead.

e You can obtain the text currently in the clipboard by using the [Clipboard] macro variable.

Page 117

Mitel MiContact Center Office SDK 6.2

14.41 ClipboardSetText
ClipboardSetText

Sets the Windows clipboard contents to be the given text.

Syntax:

ClipboardSetText(Text)

Parameter:

Text: The text to set the current clipboard contents to.

Example:

' Copy line number of current call to clipboard.

ClipboardSetText (“Line : ” + [Line])

Notes:

e This command will clear the contents of the clipboard before storing the given text in it.

e You can obtain the text currently in the clipboard by using the [Clipboard] macro variable.

Page 118

Technical Manual

14.42 DataSetNum
DataSetNum

Stores a numerical value in a particular [Datan] macro variable.

Syntax:

DataSetNum(DataVar, NumValue)

Parameters:

o DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the “NumValue” value in,
where 1 represents [Data1], 2 depicts [Data2], etc.

e NumValue: The numerical value to store in the macro variable. This can also be an expression that when evaluated
would return a numerical value, e.g., “(10 * 3) + 5”

Example:

' Set the [Datal] Macro Variable Reference
' to a value of 30.

DataSetNum (1, 30)

Notes:

e The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has
completed this execution, the macro variable settings are forgotten.

e If you try to use a textual value in the “NumValue” argument, your user action will not compile. You should use
DataSetStr if you want to store a textual value in a data macro variable.

Page 119

Mitel MiContact Center Office SDK 6.2

14.43 DataSetStr
DataSetStr

Stores a textual (string) value in a particular [Datan] macro variable.

Syntax:

DataSetStr(DataVar, Text)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the “Text” value in, where 1
represents [Data1], 2 depicts [DataZ2], etc.

e Text: The textual (string) value to store in the macro variable. This can also be an expression that, when evaluated,
would return a text-based value, for example,

[CEL T L “Deve|0per SDK”

Example:

' Temporarily sets the [Datal] Macro Variable
' to the current text value in the clipboard.

DataSetStr(l, [Clipboard])

Notes:

e The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has
completed this execution, the macro variable settings are forgotten.

e [f you try to use a numeric value in the “Text” argument, your user action will not compile. You should use DataSetNum
if you want to store a numerical value in a data macro variable.

Page 120

14.44 DataSetStrChrReplace
DataSetStrChrReplace

Technical Manual

This command replaces all sub-strings in a given string with a particular replacement string, and then stores the result in a
[Datan] macro variable.

Syntax:

DataSetStrChrReplace(DataVar, Text, TextToFind, TextReplacement)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the result of the string
replacement, where 1 represents [Data1], 2 depicts [Data2], etc.

e Text: The original textual value to perform the string replacement in.

e TextToFind: The sub-string that will be replaced in the “Text” value. Any occurrences of this sub-string will be replaced,
not just the first one.

o TextReplacement: The string to replace occurrences of “TextToFind” with. This string does not need to be the same
length as “TextToFind”.

Note: The TextReplacement function is case-sensitive.

Example:

v

The following macro works around the problem where you need to
send a string as keystrokes that contains the “(” or “)”
characters, which have a special meaning to Sendkeys.

Copy the contents of Column 3 for the current call to

[Datal].

DataSetStr (1, [Col3])

v

v

Now replace any “(” or “)” characters with
their appropriate Sendkeys syntax (bracket

surrounded by braces)

DataSetStrChrReplace (1, [Datall, “ (%, “{(}”)

DataSetStrChrReplace (1, [Datal]l, “)”, “{)}”)

Send the keystrokes.

Sendkeys ([Datall])

Notes:

The [Datan] macro variables hold their value only for the life of the execution of the user action. After the action has completed
this execution, the macro variable settings are forgotten.

Page 121

Mitel MiContact Center Office SDK 6.2

14.45 DataSetStrChrStrip
DataSetStrChrStrip

This command removes all occurrences of characters in a sub-string from a given string, and stores the result in a [Datan]
macro variable.

For example, if the string “No vowels in this” was provided along with a string of characters to remove as “aeiou”, the resulting
string would be “N vwis n ths”.

Syntax:

DataSetStrChrStrip(DataVar, StrValue, StripChars)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the result of the string after
characters are stripped, where 1 represents [Data1], 2 depicts [DataZ2], etc.

e StrValue: A textual value that will have characters contained in “StripChars” removed from it, before the result in stored
in a macro variable.

e StripChars: A string of characters that must be removed from “StrValue”. Any character that occurs in this string will be
removed from “StrValue;” if the character occurs multiple times in “StrValue,” it will be removed multiple times.

Example:

' Copy the text selected in the last active

' application window, and strip any non-numeric
' characters from the string.

!

' Set focus to last active application.
AppActivatelastFoc (1)

' Ensure focus has changed.

YieldToOs

' Copy the selected text.

AppCopyText

' Now strip a-z (lower case) characters
DataSetStrChrStrip(l, [Clipboard], “abcdefghijklmnopgrstuvwxyz”)
' Now strip A-7Z (upper case) characters

DataSetStrChrStrip(l, [Datal], “ABCDEFGHIJKLMNOPQRSTUVWXYZ")

Notes:

The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has completed
this execution, the macro variable settings are forgotten.

Page 122

Technical Manual

14.46 DataSetStrLeft
DataSetStrLeft

This command stores the leftmost part of a given string in a [Datan] macro variable, specifying how many characters of the
string depict the leftmost part.

Syntax:

DataSetStrLeft(DataVar, StrValue, LeftPart)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the result of the string after
processing, where 1 represents [Data1], 2 depicts [Data2], etc.

e StrValue: A textual value that will have the first “LeftPart” characters copied into the given [Datan] macro variable.

e LeftPart: The number of characters to copy from the start of the “StrValue” string into the [Datan] macro variable.

Example:

' Assign the first 5 digits (area prefix) of a
' telephone number to the [Datal] Macro
' Variable Reference.

DataSetStrLeft (1, [Digits], 5)

Notes:

The command does not affect the contents of “StrValue,” since the characters are copied into the [Datan] macro variable,
rather than moved.

The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has completed
this execution, the macro variable settings are forgotten.

Page 123

Mitel MiContact Center Office SDK 6.2

14.47 DataSetStrLen
DataSetStrLen

This command stores the length of the given string in a specific [Datan] macro variable.

Syntax:

DataSetStrLen(DataVar, StrValue)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the length of the string in,
where 1 represents [Data1], 2 depicts [Data2], etc.

e StrValue: A textual value to calculate the length of, and store in the given [Datan] macro variable.

Example:

' Assign the length of the telephone number
' to the [Datal] Macro Variable Reference.

DataSetStrLen(l, [Digits])

Notes:

The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has completed
this execution, the macro variable settings are forgotten.

Page 124

Technical Manual

14.48 DataSetStrMid
DataSetStrMid

This command copies a range of characters from a given string into a specific [Datan] macro variable.
Syntax:
DataSetStrMid(DataVar, StrValue, Start, Length)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the copied characters in,
where 1 represents [Data1], 2 depicts [Data2], etc.

e StrValue: A textual value from which a range of characters will be copied and stored in the given [Datan] macro
variable.

e Start: he index of the first character in “StrValue” to begin copying from, where a value of 1 represents the first
character, 2 the second, and so on.

e Length: The number of characters in “StrValue” to copy.

Example:

' Obtain the 7th up to the 10th character from
' the clipboard.

DataSetStrMid (1, [Clipboard], 7, 4)

Notes:

o If either “Start” or “Length” are out of a valid range, e.g., greater than the length of the string, an error does not occur,
and the [Datan] macro variable is set correctly. For example, passing a “Length” of 40 when the original string had only
20 characters in it, would return all characters from the specified “Start” character.

e The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has
completed this execution, the macro variable settings are forgotten.

Page 125

Mitel MiContact Center Office SDK 6.2

14.49 DataSetStrRight
DataSetStrRight

This command stores the rightmost part of a given string in a [Datan] macro variable, specifying how many characters of the
string depict the rightmost part.

Syntax:

DataSetStrRight(DataVar, StrValue, RightPart)

Parameters:

e DataVar: A numerical value between 1 and 11 which depicts the [Datan] variable to store the result of the string after
processing, where 1 represents [Data1], 2 depicts [Data2], etc.

e StrValue: A textual value that will have the right “RightPart” characters copied into the given [Datan] macro variable.

e RightPart: The number of characters to copy from the end of the “StrVValue” string into the [Datan] macro variable.

Example:

' Take the last 3 characters from the
' digits of the current call and assign them
' to the [Datal] Macro Variable Reference.

DataSetStrRight (1, [DDIDigits], 3)

Notes:

The [Datan] macro variables only hold their value for the life of the execution of the user action. After the action has completed
this execution, the macro variable settings are forgotten.

Page 126

Technical Manual

14.50 DDECIlose
DDECIlose

This command terminates an active DDE conversation on the specified channel. If the given channel does not have an active
DDE conversation, an error occurs. If you have used the SetErrorsFatal command to switch off error handling, then the error
will be accessible from the [ErrorDesc] and [ErrorDesc] macro variables, otherwise macro execution will stop.

Syntax:

DDECIose(Channel)

Parameter:

Channel: The channel number of the DDE conversation that should be terminated. This can be a value from 1 to 6.

Example:

' Close DDE conversation on channel 1.

DDEClose (1)

Notes:

When execution reaches the end of a user action, all open DDE conversations are closed anyway.

Page 127

Mitel MiContact Center Office SDK 6.2

14.51 DDEOpen
DDEOpen

Attempts to start a DDE conversation on the channel specified. If a conversation is already active on the channel, an error
occurs .If you have used the SetErrorsFatal command to switch off error handling, then the error will be accessible from the
[ErrorDesc] and [ErrorNum] macro variables, otherwise macro execution will stop.

The DDE topic and DDE application name for the conversation must have already been set using commands
DDESetAppName and DDESetTopic.

Syntax:

DDEOpen(Channel)

Parameters:

Channel: The channel number to open the DDE conversation on. This can be a value from 1 to 6.
Example:

DDEOpen (1)

Notes:

To start a DDE conversation with another application, that application should be running already. To automatically start an
application before you try to start communicating with it, use the AppActivateLikeShell or Shell commands.

Page 128

Technical Manual

14.52 DDEPoke
DDEPoke

This command sends a piece of textual data related to a named item over an active DDE conversation. This is typically used to
set a variable or object with a particular value when communicating via DDE, e.g., to set the contents of a cell in Excel.

If an error occurs and you have used the SetErrorsFatal command to switch off error handling, then the error will be accessible
from the [ErrorDesc] and [ErrorNum] macro variables, otherwise macro execution will stop.

Syntax:
DDEPoke(Channel, ltemName, DataString)

Parameters:

e Channel: The channel number of the DDE conversation to send data over. This can be a value from 1 to 6.

e ItemName: The name of the item to set in the application with which a DDE conversation is active. The value of this

parameter will depend entirely on the application being conversed with, and the topic on which the conversation is
about.

e DataString: The data to send across to the application with which a DDE conversation is active.

Example:

' Place value 100 in cell (row 1, column 1)
' in Excel spreadsheet.

DDEPoke (1, “R1C1”, “100")

Page 129

Mitel MiContact Center Office SDK 6.2

14.53 DDERequest
DDERequest

This command requests a piece of data related to a named item from an active DDE conversation. This is typically used to
retrieve information about a current variable or object when communicating via DDE, e.g., to get the contents of a cell in Excel.

If the request is successful, the result is returned in the appropriate [DDEn] macro variable for the DDE channel being used,
e.g., if the conversation is on channel 2, the result is returned in the [DDE2] macro variable.

If an error occurs and you have used the SetErrorsFatal command to switch off error handling, then the error will be accessible
from the [ErrorDesc] and [ErrorNum] macro variables, otherwise macro execution will stop.

Syntax:

DDERequest(Channel, temName)

Parameters:

e Channel: The channel number of the DDE conversation to request data from. This can be a value from 1 to 6.

e ItemName: The name of the item to retrieve in the application with which a DDE conversation is active. The value of
this parameter will depend entirely on the application being conversed with, and the topic on which the conversation is
about.

Example:

' Request all the DDE topics that Microsoft
' Word supports.

DDESetAppName (1, “WinWord”)

DDESetTopic (1, “System”)

DDEOpen (1)

DDERequest (1, “Topics”)

' Show all the topics to the user.
MessageBox ([DDE1], 0, “”)

DDEClose (1)

Notes:

e If a conversation is not active on the given channel when a DDE request is made, an error will be returned.

e [f you start a conversation with an application’s “System” topic, you can usually retrieve a list of all topics currently
supported by that application.

Page 130

Technical Manual

14.54 DDESendCmd
DDESendCmd

This command sends an application-specific command string over a given DDE conversation. This command can be used
when a DDE server supports receiving commands to make it perform actions; the commands that can be passed to the DDE
server are dependent upon the server. Consult the other application’s documentation for further information.

If an error occurs and you have used the SetErrorsFatal command to switch off error handling, then the error will be accessible
from the [ErrorDesc] and [ErrorNum] macro variables, otherwise macro execution will stop.

Syntax:

DDESendCmd(Channel, CommandString)

Parameters:

e Channel: The channel number of the DDE conversation to send a command to. This can be a value from 1 to 6.

¢ CommandString: The application-specific command to send to the DDE server.

Example:

' Open Excel spreadsheet ORDERS.XLS.
DDESendCmd (1, “[OPEN (”“ORDERS.XLS"”“)]1")

Notes:

This command will return an error if the DDE server returns an error because the command failed, or the command was invalid
in some form. In such instances, the use of the GotolfDDESendCmd command is preferred, as it provides conditional
branching based on whether the DDE command was successful or not.

Page 131

Mitel MiContact Center Office SDK 6.2

14.55 DDESetAppName
DDESetAppName

This command sets the DDE application name that the given channel will use when initiating a conversation with the DDEOpen
command.

The application name must be set for a channel before you set the topic name for that channel with the DDESetTopic
command.

Syntax:
DDESetAppName(Channel, AppName)

Parameters:

e Channel: The channel number of the DDE conversation to set the application name for. This can be a value from 1 to 6.

e AppName: The application name that you want to hold a conversation with. The name is dependent on the application
that you want to communicate with, e.g., ’s application name is “Callview”.

Example:
' Set the application name on DDE channel 1
' to communicate with Microsoft Excel.

DDESetAppName (1, “EXCEL")

Notes:

You cannot change the application name for a conversation after the conversation has started. You must call DDEClose before
the application name can be changed.

Page 132

Technical Manual

14.56 DDESetTimeOut
DDESetTimeOut

This command sets the timeout period for DDE commands on a given channel. A timeout can occur on a DDE channel if the
application being conversed with takes a long time to respond to a DDE command, e.g., a search for a record could take a long
time, and so the DDE client has to assume after a given time that the DDE server is not going to respond.

Syntax:

DDETimeOut(Channel, Timeout)

Parameters:

e Channel: The channel number of the DDE conversation to set the timeout for. This can be a value from 1 to 6.

e Timeout: A numerical value which depicts the DDE timeout in tenths of a second. So setting this value to 10 would
result in a DDE timeout of 10 x 0.1s = 1s. The default value is 100, providing a 10 second DDE timeout.

Example:

' Set DDE timeout to half a second.
DDETimeOut (1, 5)

Notes:

e Under normal circumstances there is no need to change the DDE timeout. If you are sending a command to a DDE
server that you expect may take some time, then it is sensible to increase the DDE timeout before sending the
command.

e You can change the DDE timeout even when a conversation is active, although it is a good idea to set it before opening
the conversation as well.

e |f a DDE command times out, then an error will occur and your user action will stop. You can control whether timeouts
return an error using the DDESetTimeOutWarningOff command.

e The DDE timeout is returned to its default value when the user action ends.

Page 133

Mitel MiContact Center Office SDK 6.2

14.57 DDESetTimeOutWarningOff
DDESetTimeOutWarningOff

This command specifies whether an error is generated when a DDE command times out. By default DDE timeouts will generate
an error.

Syntax:
DDESetTimeOutWarningOff(Channel, Disable Timeout)

Parameters:

e Channel: The channel number of the DDE conversation to set the timeout warning setting for. This can be a value from
110 6.

e DisableTimeout: If this numerical value is 1, timeout warnings are disabled, and so no errors will be generated.

If the value is 0, timeout warnings are enabled, and so errors will be generated if a timeout occurs.

Example:

' Set time-out warnings off for DDE channel 1.

DDESetTimeOutWarningOff (1, 1)

Notes:

You can enable or disable timeout warnings regardless of whether a DDE conversation is active or not. For example, if you
knew that a particular DDE command was going to take an exceptionally long time, you would switch off the timeout warning
before executing the DDE command, and then enable the timeout warning after the command had completed.

Page 134

Technical Manual

14.58 DDESetTopic
DDESetTopic

This command sets the DDE topic name that the given channel will use when initiating a conversation with the DDEOpen
command.

The topic name must be set for a channel before you open a DDE conversation with DDEOpen. You must set the application
name for the channel with DDESetAppName before you call this method.

Syntax:
DDESetTopic(Channel, TopicName)

Parameters:

e Channel: The channel number of the DDE conversation to set the topic name for. This can be a value from 1 to 6.

e TopicName: The topic name that you want to hold a conversation with. The name is dependent on the application that
you want to communicate with. An application can support multiple topic names, but all DDE servers support the
“System” topic.

Example:

' Set the topic name on DDE channel 1 to communicate
' with Microsoft Excel spreadsheet ORDERS.XLS.
DDESetTopic (1, “ORDERS.XLS”)

Notes:

You cannot change the topic name on a channel once a DDE conversation has been started on that channel. Close the
conversation first with DDEClose.

Page 135

Mitel MiContact Center Office SDK 6.2

14.59 End
End

This command stops execution of the user action. It is equivalent to execution reaching the end of the action, although you do
not need to call End at the end of the action script.

Syntax:

End

Parameters:

None.

Example:

' Goto line label “AccessOpen” if Microsoft

' Access 1is currently running.

GotoIfAppActive (“AccessOpen”, “Microsoft Access”, 0)
End ' Exit macro if Access is not running.
AccessOpen:

' Continue with execution here...

Page 136

Technical Manual

14.60 ExitMacroAppActive
ExitMacroAppActive

This command stops execution of the user action based on whether an application window with a specific titlebar text is found
or not.

Syntax:
ExitMacroAppActive(WindowTitle, IsRunning)

Parameters:

o WindowTitle: The left part of the title of the application window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application

with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e IsRunning: If this numerical value is 0, then the command will stop execution if the no window can be found with the
given window title.

If the value is 1, then the command will stop execution if a window is found with the given window title.

Example:

' Exit macro if Notepad application is open.

ExitMacroAppActive (“Notepad”, 1)

Notes:

e This command is useful for stopping actions that require an application to be open, e.g., an action that uses DDE to
communicate with another application; if the application is not running then the DDE communication will not work.

e An alternative to this command is the GotolfAppActive command, that allows you to conditionally branch depending on
whether the window is open or not. This allows more flexibility than just ending the action.

Page 137

Mitel MiContact Center Office SDK 6.2

14.61 ExitMacrolfCallType
ExitMacrolfCallType

This command stops execution of a user action if the current call is of a particular type, e.g., internal, or answered, etc.
Syntax:

ExitMacrolfCallType(CallType)

Parameter:

CallType: A numerical value that defines the type of call to check for. If the current call matches the specified type, the user action will
stop its execution. The following options are available:

Value Call Type

0 Internal call

1 External (trunk line) call

Outbound call

Inbound call

Held call

Unheld call

Answered call

Unanswered call

The telephone number or e-mail address was identified against ‘s telephone data import.

Ol | N BN

The telephone number or e-mail address was not identified against ‘s telephone data import.

Note: If no is received, the number is considered not identified.

10 | was received for an inbound external call

11 was not received for an inbound external call

Example:

' Exit macro if the current call was received
' with no calling line identity ().

ExitMacroIfCallType (11)

Notes:

An alternative to this command is the GotolfCallType command that allows you to conditionally branch depending on the type of call.
This allows more flexibility than just ending the action.

Page 138

Technical Manual

14.62 ExitMacrolfNoCalls
ExitMacrolfNoCalls

This command stops execution of the user action based on the number of calls active at the extension associated with .
Syntax:
ExitMacrolfNoCalls(CallCount)

Parameter:

CallCount: A numerical value that depicts the number of active calls that must be active at the extension assigned to for the
user action to stop execution. For example, if this value is 0, the action will stop if there are no calls active at the assigned
extension.

Example:

' Exit macro if there are no calls.

ExitMacroIfNoCalls (0)

Notes:

e This command is useful for stopping user actions that contain call-based macro variables. Such macro variables return
an error if no call is active, so stopping the action before the macro variables are referenced can be very helpful.

e An alternative to this command is the GotolfNoCalls command that allows you to conditionally branch depending on
the number of calls. This allows more flexibility than just ending the action.

Page 139

Mitel MiContact Center Office SDK 6.2

14.63 ExitMacroNumValue

ExitMacroNumValue

This command stops execution of a user action depending on the comparison between two numerical expressions.

Syntax:

ExitMacroNumValue(Value1, Value2, CompareType)

Parameters:

e Value1: The first numerical value that will be compared against the second numerical value, “Value2.”
e Value2: The second numerical value that will be compared against the first value, “Value1.”

e CompareType: If this value is 0, the command will stop action execution if “Value1” and “Value2” are different.

If the value is 1, the command stops execution if the two values are equal.
Example:

' Stop macro if current call is on line 700.

ExitMacroNumValue ([Line], 700, 1)

Page 140

Technical Manual

14.64 ExitMacroStrValue
ExitMacroStrValue

This command stops execution of a user action depending on the comparisons of two string expressions.

Syntax:

ExitMacroStrValue(String1, String2, CompareType)

Parameters:

e String1: The first string value that will be compared against the second string value, “String2.”
e String2: The second string value that will be compared against the first string, “String1.”

e CompareType: If this value is 0, then the command will stop action execution if “String1” and “String2” are different.

If the value is 1, the command stops execution if the two strings are equal.

Example:

' Stop macro if the current call was received on
' the sales order telephone number.

ExitMacroStrValue ([DNIS], “Sales Order Line”, 1)

Notes:

When comparing strings, this command ignores case, i.e., “Hello” is the same as “hello” which is the same as “HELLO”.

Page 141

Mitel MiContact Center Office SDK 6.2

14.65 FileClose

FileClose

This command closes a file that has been opened using the FileOpen command.
Syntax:

FileClose(FileIndex)

Parameters:

FileiIndex: This numeric value depicts which file handle to close. It can be a value between 1 and 5. When you open a
file, you choose which of the 5 handles to use, and then specify that handle in all further file operations until the file is
closed.

Example:

’ Close file handle 1
FileClose (1)

Notes:

e All open file handles are closed when the macro exits.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 142

Technical Manual

14.66 FileOpen
FileOpen

This command opens a file.
Syntax:
FileOpen(Filelndex, FileName, OpenFor)

Parameters:

° FileIndex: This numeric value depicts which file handle to open a file on. It can be a value between 1 and 5.
When you open a file, you choose which of the 5 handles to use, and then specify that handle in all further file
operations until the file is closed. If the handle you select is already being used with an open file, then an error is

generated.
° FileName: This is the fully pathed filename of the file to open.
° OpenFor: This numeric value defines how the file will be opened. It can be a value between 1 and 3, as follows:

1 Open the file for reading
2 Open the file for writing, always creating a brand new file
3 Open the file for appending, only creating a new file if the given file doesn’t exist

Example:

‘' Open a file called “Calllog.Txt” in the Windows folder for
‘' appending, so that it will be created if it doesn’t exist

FileOpen(l, [WINDIR] + “CallLog.Txt”, 3)

Notes:

e Although all open file handles are closed when the macro exits, you should call the FileClose command once you are
finished using a file or file handle.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 143

Mitel MiContact Center Office SDK 6.2

14.67 FileRead
FileRead

This command reads data from a file that has been opened using the FileOpen command. It reads a fixed number of bytes from
the file into the given [Datan] macro variable.

Syntax:

FileRead(FileIndex, NumBytes, DataVar)

Parameters:

e Filelndex: This numeric value depicts which file handle to read data from. It can be a value between 1 and 5. When you
open a file, you choose which of the 5 handles to use, and then specify that handle in all further file operations until the

file is closed.
If you have not opened the given file for reading, then an error will occur.

e NumBytes: This numeric value depicts the number of bytes to read from the given file. The bytes will be read directly
into memory, and the file pointer advanced.

e DataVar: This numeric value depicts which of the [Datan] macro variables will receive the data that is read. This can be
a value between 1 and 11.

Example:

' Read the next 6 bytes of a file into [Data3]
FileRead(1l, 6, 3)

Notes:

e This command is best used for files where the data is stored in a fixed length format, rather than a variable length
format. For variable length formats, use the FieldReadLine command.

e The [EOFn] macro variables will be set to a non-zero value when you have reached the end of the file.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 144

Technical Manual

14.68 FileReadLine
FileReadLine

This command reads data from a file that has been opened using the FileOpen command. It reads an entire line of text from the
file into the given [Datan] macro variable.

Syntax:

FileReadLine(Filelndex, DataVar)

Parameters:

e Filelndex: This numeric value depicts which file handle to read data from. It can be a value between 1 and 5. When you
open a file, you choose which of the 5 handles to use, and then specify that handle in all further file operations until the

file is closed.
If you have not opened the given file for reading, then an error will occur.

e DataVar: This numeric value depicts which of the [Datan] macro variables will receive the data that is read. This can be
a value between 1 and 11.

Example:

' Read the next line from the file into [DataZ2]

FileReadLine (1, 2)

Notes:

e This command is best used for files where the data is stored in a variable length format, rather than a fixed length
format. For fixed length formats, use the FieldRead command.

e The [EOFn] macro variables will be set to a non-zero value when you have reached the end of the file.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 145

Mitel MiContact Center Office SDK 6.2

14.69 FileWrite
FileWrite

This command writes data to a file that has been opened using the FileOpen command. It writes a given string exactly as it is in
memory to the file, so can be used to write non-alphanumeric characters to a file.

Syntax:
FileWrite(Filelndex, Data)

Parameters:

e Filelndex: This numeric value depicts which file handle to read data from. It can be a value between 1 and 5. When you
open a file, you choose which of the 5 handles to use, and then specify that handle in all further file operations until the
file is closed.

If you have not opened the given file for writing or appending, then an error will occur.

e Data: This string value is the data to be written to the file. This value can be built up using non-alphanumeric characters,
using such terminology as {5} + {254} + {131}.

Example:

' Writes 4 bytes of data to the file open on channel 1.
FileWrite (1, "XA" + {7} + {23})

Notes:

e This command is best used for files where the data is stored in a fixed length format, rather than a variable length
format. For variable length formats, use the FieldWriteLine command.

e All open file handles are closed when the macro exits.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 146

Technical Manual

14.70 FileWriteLine
FileWriteLine

This command writes a line data to a file that has been opened using the FileOpen command. The data is written to the file,
and then appended with a new line character.

Syntax:
FileWriteLine(FileIndex, Data)

Parameters:

e Filelndex: This numeric value depicts which file handle to write data to. It can be a value between 1 and 5. When you
open a file, you choose which of the 5 handles to use, and then specify that handle in all further file operations until the

file is closed.
If you have not opened the given file for writing or appending, then an error will occur.

e Data: This string value is the data to be written to the file. The data will be appended with a new line character when it is
written.

Example:

' Write the selected call's telephone number to the open file

FileWriteLine (1, "Call from " + [Digits])

Notes:

e This command is best used for files where the data is stored in a variable length format, rather than a fixed length
format. For fixed length formats, use the FieldWrite command.

e All open file handles are closed when the macro exits.

e By default the file handling commands will halt execution of the macro if an error occurs. You can use the
SetErrorsFatal command to stop this from occurring, so that the error description and number are available via the
[ErrorDesc] and [ErrorNum] macro variables.

Page 147

Mitel MiContact Center Office SDK 6.2

14.71 FormatTelephoneNumber

FormatTelephoneNumber

This command formats a provided telephone number into a given style, as defined in the "Dial Formats" section of Callview's
INI file, CALLVIEW32.INI.

The result is store into a given [Datan] macro variable, and can be utilized from there using the usual commands and macro
variables.

This command is useful when searching a database for a telephone number, where the telephone number is stored in a
formatted style, as opposed to a string of digits, e.g. stored as (01293) 608-200 as opposed to 01293608200.

Syntax:

FormatTelephoneNumber(Digits, Format, DataVar)

Parameters:

e Digits: This string value represents the telephone number to be formatted.

e Format: This numerical value represents which of the "Dial Formats" to format the number with. This can be between 1
and the value of the [TeINoFormatCount] macro variable.

e DataVar: This numeric value depicts the [Datan] macro variable that the formatted result will be stored in. For example,
setting this value to 1 would store the property’s value in the [Data1] macro variable.

Example:

' Format the current call's phone number using format 11,
' and store the result in [Datal].

FormatTelephoneNumber ([Digits], 11, 1)

Page 148

Technical Manual

14.72 GetlniSetting
GetlniSetting

This command reads a single setting from the CVMACRO.INI file that can be used to provide special configuration for user-
defined macros.

The setting is read into the given [Datan] macro variable, and can be utilized from there using the usual commands and macro
variables.

Syntax:
GetlIniSetting(SectionName, KeyName, Default, DataVar)

Parameters:

e SectionName: This string value represents the name of the section in the INI file where the setting is stored. Sections
are denoted in INI files by wrapping them in square brackets, e.g. "[SectionName]".

o KeyName: This string value represents the name of the value in the INI file to read. The key to be read must fall within
the section denoted by the "SectionName" parameter.

e Default: This string value represents the default value to store in the given data variable if they required value could not
be located in the given section name.

e DataVar: This numeric value depicts the [Datan] macro variable that the retrieved value will be stored in. For example,
setting this value to 1 would store the property’s value in the [Data1] macro variable.

Example:

' Get the "SearchAllPhoneFields" setting from [Options] section
' into [Data3]. The default value is "1".
GetIniSetting ("Options"™, "SearchAllPhoneFields", "1", 3)

Note:

You use the SetIniSettingStr and SetIniSettingNum commands to store information in the CVMACRO.INI file. You
can also edit the file by hand using a text editor, such as Notepad.

Page 149

Mitel MiContact Center Office SDK 6.2

14.73 GlobalDataGet
GlobalDataGet

This command retrieves a value from ’s global property set, and stores it in a given [Datan] macro variable.

has a global property set that lasts for the duration that is connected to the . The global property set consists of several named
properties that can all be accessed by any user action. This allows for sharing of information between different actions, or for an
action to persist information between one execution and another.

Syntax:
GlobalDataGet(PropertyName, DataVar)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to get the current value
for. If the property name does not exist, an error is generated.

e DataVar: This numerical value depicts the [Datan] macro variable that the property’s current value will be stored in. For
example, setting this value to 1 would store the property’s value in the [Data1] macro variable.

Example:

’ Get the “LastCallDate” property into [Data3]
GlobalDataGet (“LastCallDate”, 3)

Notes:

e You can also use the LocalDataGet command to get data from the action’s local property set. The local property set
only contains properties for the current action while it is executing, and can be useful for extending storage beyond the
11 [Datan] macro variables.

e You use the GlobalDataSetStr and GlobalDataSetNum commands to store information in the global property set for
this user action.

Page 150

Technical Manual

14.74 GlobalDataSetNum
GlobalDataSetNum

This command sets a value in ’s global property set to a given numeric value.

has a global property set that lasts for the duration that is connected to the . The global property set consists of several named
properties that can all be accessed by any user action. This allows for sharing of information between different actions, or for an
action to persist information between one execution and another.

Syntax:

GlobalDataSetNum(PropertyName, Value)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to set to the given value.
If the given property does not exist, it is automatically created.

e Value: The numerical value to store in the global property set.

This value will remain in the global property set until loses connection with the , or until it is overwritten with a call to
GlobalDataSetNum or GlobalDataSetStr.

Example:

' Store the contents of [Datal] in property “LastValue”.
GlobalDatSetNum (“LastValue”, [Datall)

Notes:

e You can also use the LocalDataSetNum command to set data in the local property set. The local property set only
contains properties for the current action while it is executing, and can be useful for extending storage beyond the 11
[Datan] macro variables.

e You can use the GlobalDataSetStr command to store a string value in a property.

Page 151

Mitel MiContact Center Office SDK 6.2

14.75 GlobalDataSetStr
GlobalDataSetStr

This command sets a value in ’s global property set to a given string value.

has a global property set that lasts for the duration that is connected to the . The global property set consists of several named
properties that can all be accessed by any user action. This allows for sharing of information between different actions, or for an
action to persist information between one execution and another.

Syntax:
GlobalDataSetStr(PropertyName, Text)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to set to the given value.
If the given property does not exist, it is automatically created.

e Text: The string value to store in the global property set.

This value remains in the global property set until loses connection with the , or until it is overwritten with a call to
GlobalDataSetNum or GlobalDataSetStr.

Example:

' Store the current account code in property “OldAccountCode”.

GlobalDatSetStr (“OldAccountCode”, [AccountCode])

Notes:

e You can also use the LocalDataSetStr command to set data in the local property set. The local property set only
contains properties for the current action while it is executing, and can be useful for extending storage beyond the 11
[Datan] macro variables.

e You can use the GlobalDataSetNum command to store a numerical value in a property.

Page 152

Technical Manual

14.76 Gosub...Return

Gosub...Return

This command sequence provides the ability to branch the code to perform a subroutine, before returning to the calling code to
continue execution.

A subroutine is a small piece of code that does some task that is likely to be performed very often, or in multiple places. Rather
than include the same piece of code in several locations, the code is written as a subroutine, and then a single line calls the
subroutine when and where needed.

Syntax:

Gosub(LineLabel)

Parameter:

LineLabel: The line label that denotes the first line of code for the subroutine. When the execution reaches the Gosub
command, it will jump to this line label.

A line label is case insensitive, but must contain no spaces or punctuation.

Example:

' Call the Subroutine that activates and restores
' the Notepad application if present, or runs it if
' it is not open yet.

Gosub (“ActivateNotepad”)

Sub routine that runs or activates/restores
' the Notepad application.

ActivateNotepad:

AppActivateLikeShell (“Untitled - Notepad”, “NOTEPAD.EXE”)
YieldToOs

Return execution to line following

' original Gosub macro statement.

Return

Notes:

e Although you can use Gosub to a specific line label as many times as you want, there can only be one instance of that
line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

e You can call one subroutine from another. However there is a limit of 15 “nested” calls, i.e., where one subroutine calls
another subroutine. In a similar fashion, a subroutine could call itself, as long as there are no more than 15 of these
“nested” subroutine calls.

Page 153

Mitel MiContact Center Office SDK 6.2

14.77 Goto
Goto

This command continues execution of the user action at the given line label.
Syntax:
Goto(LineLabel)

Parameters:

LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution.

A line label is case insensitive, but must contain no spaces or punctuation.

Example:

' Temporarily ignore macro commands
' following the Goto statement.

Goto (“Exit”)

Exit:

Notes:

e You can use this command to jump backwards as well as forwards in a user action.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 154

Technical Manual

14.78 GotolfAppActive
GotolfAppActive

This command continues execution of a user action at a given line label if an open application window has the leftmost part of
its titlebar text match a specified string. If the given window cannot be located, then execution carries on at the next line of the
script.

Syntax:

GotolfAppActive(LineLabel, WindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given window title can be found.

A line label is case insensitive, but must contain no spaces or punctuation.

e WindowrTitle: The left part of the title of the application window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified window exists.

If this numerical value is 1, execution continues at the specified line label if the specified window does not exist.

Example:

' Jump to AppOpen: if Notepad is already open.
GotoIfAppActive (“AppOpen”, “Untitled - Notepad”, 0)

AppOpen:

Notes:

e This command can detect application windows that are hidden. There are many application windows that are always
open under Windows but are not actually visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e It may be more preferable to use the GotolfAppActiveRight command instead of GotolfAppActive in some
circumstances. The GotolfAppActiveRight command can identify an application by matching the right portion of its
titlebar text instead of the left part.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 155

Mitel MiContact Center Office SDK 6.2

14.79 GotolfAppActiveChild
GotolfAppActiveChild

This command continues execution of a user action at a given line label if a given application window has a particular child
window open. Both the application and child windows are located based on a match with the leftmost part of their titlebar text. If
the given window cannot be located, execution carries on at the next line of the script.

Syntax:

GotolfAppActiveChild(LineLable, AppTitle, ChildTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given child window title can be found.

A line label is case insensitive, but must contain no spaces or punctuation.

e AppTitle: The left part of the title of the application window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e ChildTitle: The left part of the title of the child window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Main” would still find an open child
window with titlebar text “Main Menu”. The comparison is also not case sensitive, i.e., “Main Menu” and “main menu”
appear identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified window exists.

If this numerical value is 1, execution continues at the specified line label if the specified window does not exist.

Example:

' Jump to GotOrder: if the Order Form
' is open in Microsoft Access.

GotoIfAppActiveChild (“GotOrder”, “Microsoft Access”, “Order”, 0)

GotOrder:

Notes:

e This command can detect application windows that are hidden. There are many application windows that are always
open under Windows but are not actually visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be

Page 156

Technical Manual

one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 157

Mitel MiContact Center Office SDK 6.2

14.80 GotolfAppActiveRight
GotolfAppActiveRight

This command continues execution of a user action at a given line label if an open application window has the rightmost part of
its titlebar text match a specified string. If the given window cannot be located, then execution carries on at the next line of the
script.

Syntax:

GotolfAppActiveRight(LineLabel, WindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given window title can be found.

A line label is case insensitive, but must contain no spaces or punctuation.

e AppTitle: The right part of the title of the application window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified window exists.

If this numerical value is 1, execution continues at the specified line label if the specified window does not exist.

Example:

' Jump to AppOpen: if Microsoft Word is already open.
GotoIfAppActiveRight (“AppOpen”, “ Word”, 0)

AppOpen:

Notes:

e This command can detect application windows that are hidden. There are many application windows that are always
open under Windows but are not actually visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

e It may be more preferable to use the GotolfAppActive command instead of GotolfAppActiveRight in some
circumstances. The GotolfAppActive command can identify an application by matching the left portion of its titlebar
text instead of the right part.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 158

Technical Manual

14.81 GotolfAppActiveRightChild
GotolfAppActiveRightChild

This command continues execution of a user action at a given line label if a given application window has a particular child
window open. The application window is located based on a match with the rightmost part of its titlebar text, while the child
window is located based on a match with the leftmost part of its titlebar text. If the given window cannot be located, execution
carries on at the next line of the script.

Syntax:

GotolfAppActiveRightChild(LineLabel, AppTitle, ChildTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given child window title can be found.

A line label is case insensitive, but must contain no spaces or punctuation.

e AppTitle: The rightmost part of the title of the application window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e ChildTitle: The left part of the title of the child window to find.
The name that appears in the titlebar need not be fully specified. For instance, “Main” would still find an open child
window with titlebar text “Main Menu”. The comparison is also not case sensitive, i.e., “Main Menu” and “main menu”
appear identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified window exists.

If this numerical value is 1, execution continues at the specified line label if the specified window does not exist.

Example:

' Jump to ChildOpen: if Documentl
' is open in Microsoft Word.

GotoIfAppActiveRightChild (“ChildOpen”, “Word”, “Documentl”, O0)

ChildOpen:

Notes:

e This command can detect application windows that are hidden. There are many application windows that are always
open under Windows but are not actually visible. Examples are the NetDDE application window (“NetDDE”) and the
clipboard server application (“ClipSrv”).

Page 159

Mitel MiContact Center Office SDK 6.2

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 160

Technical Manual

14.82 GotolfAppFocus
GotolfAppFocus

This command continues execution of a user action at a given line label if the specified window, as defined by the leftmost part
of its titlebar, is the currently active window. The active window is the window that currently gets keyboard input. If the given
window is not the active window, execution carries on at the next line of the script.

Syntax:

GotolfAppFocus(LineLabel, WindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given window is the active window.

A line label is case insensitive, but must contain no spaces or punctuation.

e WindowrTitle: The left part of the title of the application window to check to see ifit's active.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application

with titlebar text “Calculator.” The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified window is the
active application.

If this numerical value is 1, execution continues at the specified line label if the specified window is not the active
application.

Example:

' Jump to AppFocus: if Notepad is the
' active application.

GotoIfAppFocus (“AppFocus”, “Untitled - Notepad”, 0)

AppFocus:

Notes:

e You can obtain the titlebar text for the current active application in expressions you place within macro command
arguments. To do this, place the [Titlebar] macro variable within the expression.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 161

Mitel MiContact Center Office SDK 6.2

14.83 GotolfAppFocusChild
GotolfAppFocusChild

This command continues execution of a user action at a given line label if the specified child window of a given application is
the currently active window. The active window is the window that currently gets keyboard input. If the given window is not the
active window then execution carries on at the next line of the script.

Both the application window and child windows are identified using the leftmost part of their titlebar text.
Syntax:

GotolfAppFocusChild(LineLabel, WindowTitle, ChildWindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given child window is the active window.

A line label is case insensitive, but must contain no spaces or punctuation.

o WindowTitle: The left part of the title of the application window that contains the child window to check.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application

with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e ChildWindowTitle: The left part of the title of the child window to check to see if it is active.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified child window is the
active window, i.e., receives keyboard input.

If this numerical value is 1, execution continues at the specified line label if the specified child window is not the active
window.

Example:

' Jump to GotOrders: if the Orders Form is
' the active child window Microsoft Access.

GotoIfAppFocusChild (“GotOrders”, “Microsoft Access”, “Orders”, 0)

GotOrders:

Notes:

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 162

Technical Manual

14.84 GotolfAppFocusRight
GotolfAppFocusRight

This command continues execution of a user action at a given line label if the specified window, as defined by the rightmost
part of its titlebar, is the currently active window. The active window is the window that currently gets keyboard input. If the
given window is not the active window, execution carries on at the next line of the script.

Syntax:

GotolfAppFocusRight(LineLabel, WindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given child window is the active window.

A line label is case insensitive, but must contain no spaces or punctuation.

e WindowTitle: The right part of the title of the application window that contains the child window to check.
The name that appears in the titlebar need not be fully specified. For instance, “ulator” would still find an open

application with titlebar text “Calculator.”The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e Condition: If this numerical value is 0, execution continues at the specified line label if the specified application window
is the active window, i.e., receives keyboard input.

If this numerical value is 1, execution continues at the specified line label if the specified application window is not the
active window.

Example:

' Jump to AppFocus: if Microsoft Word is the
' active application.

GotoIfAppFocusRight (“AppFocus”, “Word”, 0)

AppFocus:

Notes:

e You can obtain the titlebar text for the current active application in expressions you place within macro command
arguments. To do this, place the [Titlebar] macro variable within the expression.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 163

Mitel MiContact Center Office SDK 6.2

14.85 GotolfAppFocusRightChild
GotolfAppFocusRightChild

This command continues execution of a user action at a given line label if the specified child window of a given application is
the currently active window. The active window is the window that currently gets keyboard input. If the given window is not the
active window, execution carries on at the next line of the script.

The application window is identified using the rightmost part of its titlebar text, while the child window is identified using the
leftmost part of its titlebar text.

Syntax:

GotolfAppFocusRightChild(LineLabel, WindowTitle, ChildWindowTitle, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given child window is the active window.

A line label is case insensitive, but must contain no spaces or punctuation.

o WindowTitle: The right part of the title of the application window that contains the child window to check.
The name that appears in the titiebar need not be fully specified. For instance, “ulator” would still find an open

application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e ChildWindowTitle: The left part of the title of the child window to check to see if it's active.

e Condition: If this numerical value is 0, then execution continues at the specified line label if the specified child window
is the active window, i.e., receives keyboard input.

If this numerical value is 1, execution continues at the specified line label if the specified child window is not the active
window.

Example:

' Jump to ChildActive: if Documentl is the
' active child window in Microsoft Word.

GotoIfAppFocusRightChild(“ChildActive”, “Word”, “Documentl”, O0)

ChildActive:

Notes:

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 164

Technical Manual

14.86 GotolfCallType
GotolfCallType

This command continues execution of a user action at a given line label if the current call is of a particular type. The current call is the
call selected in the active call list if the user action fires via a hot key or button, but if the action fires via a rule, then the current call is the
call that caused the rule to fire. If the current call is not of the correct type, then execution carries on at the next line of the script.

Syntax:
GotolfCallType(LineLabel, CallType, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution, if the
current call is of the type depicted by the “CallType” parameter.

A line label is case insensitive, but must contain no spaces or punctuation.

e CallType: A numerical value that depicts the type of call to check for, as follows:

Value Call Type
0 Internal call
1 External (trunk line) call
2 Outbound call
3 Inbound call
4 Held call
5 Unheld call
6 Answered call
7 Unanswered call (alerting)
8 The number or received for an external call was against the ‘s telephone data import.
9 The number or received for an external call was not against the ‘s telephone data import.
If a call is received without , it will also match this call type.
10 was received for an inbound call (external calls only).
11 was not received for an inbound call (external calls only).

e Condition: If this numerical value is 0, execution continues at the specified line label if the current call matches the specified call

type.
If this numerical value is 1, execution continues at the specified line label if the current call does not match the specified call
type.

Example:

' Jump to : if was received

' for the current call.

Page 165

Mitel MiContact Center Office SDK 6.2

GotoIfCallType (™ 7, 10, 0)

Notes:

e You can force selection of a call within ’s call list by using the CallSelect command. You usually need to use the CallSelect
command when you have written a user action that makes a new call and you need to refer to information relating to the new
call in the same action (for example, by using macro variables or commands like the GotolfCallType command).

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 166

Technical Manual

14.87 GotolfDateBetween

GotolfDateBetween

This command continues execution of a user action at a given line label if a given date is between two specific dates. If the
given date is not in the specified range, execution carries on at the next line of the script.

Syntax:

GotolfDateBetween(LineLabel, Date1, Date2, Date, IgnoreBadDates)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given date is between the specified range.

A line label is case insensitive, but must contain no spaces or punctuation.

e Date1: This string value represents the lower part of the date range to compare against. The date should be written

using the format specified in Windows Regional Settings, e.g., in the this would be “.

e Date2: This string value represents the upper part of the date range to compare against. The date should be written

using the format specified in Windows Regional Settings, e.g., in the this would be “.

e Date: This string value represents the date that is checked to ensure it is between “Date1” and “Date2”. The date should

be written using the format specified in Windows Regional Settings, e.g., in the this would be “.

If this value is between “Date1” and “Date2,” execution of the user action will continue at the specified line label,
otherwise it will continue on the next line.

e IgnoreBadDates: If this numerical value is 0, and any of the specified dates is invalid, an error is generated and
execution of the user action halts.

If the value is 1, then bad dates are ignored, and execution of the user action continues on the next line of the script, as
if the date specified was not within the given range.

“n “n

An example of a bad date could be “” (February only has 28 or 29 days), or a date that cannot be interpreted, e.g.,

Example:

' Jump to IsBefore2006: if the current
' date is before the year 2006.
GotoIfDateBetween (“IsBefore2006”, “1/1/1900”, “ /2005”, [LongDate], 0)

IsBefore2006:

Notes:

e The date to be compared can usually be best retrieved using the [ShortDate] or [LongDate] macro variables, which
return today’s date based on the current date on the computer that the user action is executing on.

Page 167

Mitel MiContact Center Office SDK 6.2

“y o«

e Dates can be entered in different styles, e.g., “”, “”, etc.

e When you specify date arguments in this command, it is advisable to use a long date format (, e.g.,) because the year
part is specified explicitly. Other date formats do not explicitly specify the year of a date. For instance, the dates and in
short date format would both be returned from Windows as “ ” when you used the [ShortDate] macro variable.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the

action.

Page 168

Technical Manual

14.88 GotolfDDESendCmd
GotolfDDESendCmd

This command continues execution of a user action at a given line label if the given DDE command fails. If the DDE command
succeeds, execution carries on at the next line of the script.

Syntax:

GotolfDDESendCmd(LineLabel, Channel, CommandsString, IgnoreMainErrors, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given DDE fails.

A line label is case insensitive, but must contain no spaces or punctuation.
e Channel: The channel number of the DDE conversation to send a command to. This can be a value from 1 to 6.
e CommandString: The application-specific command to send to the DDE server
e IgnoreMainErrors: If this numerical value is 0, execution of the user action stops with an error if a fatal DDE error

occurs.

If the value is 1, a fatal DDE error is considered as the DDE server failing the DDE command, and so is used in the
branching logic.

A fatal DDE error can include such things as:
o The command times out.
o No conversation is active on the given channel.

o The command string is empty.

e Condition: If this numerical value is 0 then execution of the user action continues at the specified line label if the DDE
command fails.

If the value is 1, execution continues at the line label if the DDE command succeeds.

Example:

' Jump to DDEFailed: if Microsoft Access rejects
' the DDE find record command.

GotoIfDDESendCmd (“DDEFailed”, 1, “[FindRecord ”“” + [Digits] + “”“1”, 0, 0)

DDEFailed:

Page 169

Mitel MiContact Center Office SDK 6.2

Notes:

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 170

Technical Manual

14.89 GotolfFileExists
GotolfFileExists

This command continues execution of a user action at a given line label if the specified file name exists. If the file does not
exist, execution carries on at the next line of the script.

Syntax:
GotolfFileExists(LineLabel, Filename, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the given file exists.

A line label is case insensitive, but must contain no spaces or punctuation.
e Filename: The fully pathed filename to the file that is being checked.

e Condition: If this numerical value is 0, execution continues at the specified line label if the given file exists.

If the value is 1, execution continues at the line label if the given file does not exist.

Example:

' Jump to MSWExists: if file “C:\WINDOWS\WINWORD.INI” exists.
GotoIfFileExists ("MSWExists”, “C:\WINDOWS\WINWORD.INI”, 0)

MSWExists:

Notes:

¢ Remember that the location of some files are not always the same between different computers, depending on how
software has been installed. It is often better if, where possible, you use macro variables such as [WinDir] to define the
path of the file, and only hardcode the filename rather than the entire path, e.g., [WinDir] + “WIN.INI", rather than
“C:\WINDOWS\WIN.INI”.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 171

Mitel MiContact Center Office SDK 6.2

14.90 GotolfMessageBox

GotolfMessageBox

This command continues execution of a user action at a given line label if the user clicks a particular button in the displayed message
box. If the given button is not selected, execution carries on at the next line of the script.

Syntax:
GotolfMessageBox(LineLabel, Message, ButtonType, Title, ButtonToClick, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution, if the
given button is clicked in the displayed message box.

A line label is case insensitive, but must contain no spaces or punctuation.
e Message: The message to display to the user in the message box.
o ButtonType: This numerical value indicates the buttons that should be available in the message box. It can also be used to

identify the type of message box to the user through an icon, as well identifying which button should be the default.

The buttons to display are indicated by one of the following values:

Value Button

0 Displays OK button only.

1 Displays OK and Cancel buttons.

Displays Abort, Retry, and Ignore buttons.

Displays Yes, No, and Cancel buttons.

Displays Yes and No buttons.

a|l bl DN

Displays Retry and Cancel buttons.

If you want to display an icon on the message box, add one of the following values to the number.

Value Icon
16 Displays a Stop icon.
32 Displays a Question Mark icon.
48 Displays an Exclamation Mark icon.
64 Displays an Information icon.

If you want to assert the default button, add one of the following values:

Value Default Button

0 First button is default.

Page 172

256

Technical Manual

Second button is default.

512

Third button is default.

For example, specifying “4 + 32 + 256” would display Yes and No buttons on the message box (4), with a question mark icon
(32), and the second button would be the default button (256).

e Title: The text to display in the titlebar of the message box.

e ButtonToClick: This numerical value defines the button that, if clicked, will cause the command to jump to the specified line
label. It can be one of the following values:

Value

Default Button

1 OK

Cancel

Abort

Retry

Ignore

Yes

N|o|loa]|l |l wW|DN

No

e Condition: This numerical value defines how the button that the user clicked is compared with the “ButtonToClick” parameter to
decide whether the command subsequently jumps to the given line label. The value can be one of the following:

Value

Action

Execution continues at the specified line label if the number representing the button clicked matct
the “ButtonToClick” parameter

Execution continues at the specified line label if the number representing the button clicked does |
match the “ButtonToClick” parameter.

Execution continues at the specified line label if the number representing the button clicked is hig
than the “ButtonToClick” parameter.

Execution continues at the specified line label if the number representing the button clicked is hig
or equal to the “ButtonToClick” parameter.

Execution continues at the specified line label if the number representing the button clicked is low
than the “ButtonToClick” parameter.

Execution continues at the specified line label if the number representing the button clicked is low
equal to the “ButtonToClick” parameter

Example:

' Jump to UserYes:

if the user clicked the Yes button.

GotoIfMessageBox (“UserYes”, “Are you an existing customer?” + 10 + “(Yes Or No)”, 4+32, “”, 6, 0)

Page 173

Mitel MiContact Center Office SDK 6.2

UserYes:

Notes:

e The longest message string is 1024 characters. The message string will be truncated after 1024 characters. However, a
message string with more than 255 characters without an intervening space will be truncated after 255 characters.

e You can insert line breaks into the message string by inserting ASCII character 10 into the string, e.g.,

e “Thisisline 1” + {10} + “This is line 2”.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 174

Technical Manual

14.91 GotolfMessageBoxCustom

GotolfMessageBoxCustom

Prior to version 4, this command was an alternative to the GotolfMessageBox command, but with a different style of message
box. In version 4, the message boxes displayed are identical, and as such the commands provide the same functionality.

Page 175

Mitel MiContact Center Office SDK 6.2

14.92 GotolfNoCalls

GotolfNoCalls

This command continues execution of a user action at a given line label if the number of calls that are currently active at the extension
associated with matches the specified condition. If the number of calls does not match the condition then execution carries on at the

next line of the script.

Syntax:

GotolfNoCalls(LineLabel, NumberCalls, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution, if the
number of calls at the extension associated with matches the “Condition” parameter.

A line label is case insensitive, but must contain no spaces or punctuation.

o NumberCalls: This numerical value defines the number of calls to compare against the actual number of calls active at the

extension.

e Condition: This value defines how “NumberCalls” is compared against the actual number of calls active at the extension. The
value is interpreted as follows:

Value Description

0 Continues execution at the given line label if the number of active calls matches the “NumberCalls”
parameter.

1 Continues execution at the given line label if the number of active calls does not match the “Number(
parameter.

2 Continues execution at the given line label if the number of active calls is higher than the “NumberCe
parameter.

3 Continues execution at the given line label if the number of active calls is higher or equal to the
“NumberCalls” parameter.

4 Continues execution at the given line label if the number of active calls is lower than the “NumberCal
parameter.

5 Continues execution at the given line label if the number of active calls is lower or equal to the
“NumberCalls” parameter.

Example:

' Jump to 2Calls:

if there are 2 calls in the call list.

GotoIfNoCalls (“2Calls”, 2, 0)

2Calls:

Notes:

Page 176

Technical Manual

e You can also obtain the current number of active calls in expressions you use in macro commands using the [Calls] macro
variable.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 177

Mitel MiContact Center Office SDK 6.2

14.93 GotolfNoRecords
GotolfNoRecords

This command is used to branch execution of the macro based on whether the query performed returned any records.
Syntax:
GotolfNoRecords(LineLabel, Channel, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if the query result matches the "Condition" parameter.
A line label is case insensitive, but must contain no spaces or punctuation.

e Channel: The channel number of the ODBC connection to check. This can be a value from 1 to 3.

e Condition: If this value is 0, and the query has returned no records, then macro execution will continue at the
LineLabel.
If this value is 1, and the query has returned records, then macro execution will continue at the LineLabel.

Example:

' Jump to the "NoRecs" Label if the resultant query
' returned no results.

GotoIfNoRecords ("NoRecs", 1, 0, 0)

Notes:

By default, errors generated will stop execution of the macro. You can switch off this functionality with the SetErrorsFatal
command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

Page 178

14.94 GotolfNumValue
GotolfNumValue

Technical Manual

This command continues execution of a user action at a given line label based on the comparison between two numeric parameters. If

the comparison is negative then execution carries on at the next line of the script.

Syntax:

GotolfNumValue(LineLabel, Number1, Number2, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,

based on the comparison between the “Number1” and “Number2” parameters.

A line label is case insensitive, but must contain no spaces or punctuation.

e Number1: This is the first number that is compared against “Number2” based on the “Condition” parameter.

o Number2: This is the number that is compared against “Number1” based on the “Condition” parameter.

e Condition: This value defines how “Number1” is compared against “Number2”. The value is interpreted as follows:

Value Action

0 Continues execution at the given line label if “Number1” equals “Number2.”

1 Continues execution at the given line label if “Number1” does not equal “Number2.”

Continues execution at the given line label if “Number1” is higher than “Number2.”

Continues execution at the given line label if “Number1” is higher or equal to “Number2.”

Continues execution at the given line label if “Number1” is lower to “Number2.”

(G20 I~ GV B V]

Continues execution at the given line label if “Number1” is lower or equal to “Number2.”

Example:

' Jump to 700Plus: if the current call
' is on a line higher or equal to 700.

GotoIfNumValue (“700P1lus”, [Line], 700, 3)

700P1lus:

Notes:

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one instance of

that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 179

Mitel MiContact Center Office SDK 6.2

14.95 GotolfStrLen
GotolfStrLen

This command continues execution of a user action at a given line label based on the comparison of the length of the given
string and the provided comparison length. If the comparison is negative, execution carries on at the next line of the script.

Syntax:
GotolfStrLen(LineLabel, String, StringLength, Condition)

Parameters:

LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, based on the comparison between the length of string “String” and the length value provided in
“StringLength.”

A line label is case insensitive, but must contain no spaces or punctuation.

e String: The string whose length is compared against the “StringLength” parameter.

e StringLength: A numerical value that defines a string length that is compared against the length of the string in “String.”

e Condition: This value defines how the length of “String” is compared against the “StringLength” value. The value is
interpreted as follows:

Value Action
0 Continues execution at the given line label if the length of “String” equals “StringLength.”
1 Continues execution at the given line label if the length of “String” does not equal “StringLength.”
2 Continues execution at the given line label if the length of “String” is higher than “StringLength.”
3 Continues execution at the given line label if the length of “String” is higher or equal to
“StringLength.”
4 Continues execution at the given line label if the length of “String” is lower than “StringLength.”
5 Continues execution at the given line label if the length of “String” is lower or equal to “StringLength.”
Example:

' Jump to DDILend: if 4 digit DID is being
' received from the network provider.

GotoIfStrLen(“DDILen4”, [DDIDigits], 4, 0)

DDILend:

Page 180

Technical Manual

Notes:

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 181

Mitel MiContact Center Office SDK 6.2

14.96 GotolfStrValue
GotolfStrValue

This command continues execution of a user action at a given line label based on the comparison of the two strings. If the comparison
is negative, execution carries on at the next line of the script.

Syntax:

GotolfStrValue(LineLabel, String1, String2, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,
based on the comparison between the “String1” and “String2.”
A line label is case insensitive, but must contain no spaces or punctuation.

e String1: The string to compare against “String2.”

e String2: The string to compare against “String1.”

e Condition: This value defines how the “String1” is compared against “String2.”

Value Action
0 Continues execution at the given line label if “String1” is equal to “String2.”
1 Continues execution at the given line label if “String1” does not equal “String2."
2 Continues execution at the given line label if “String1” is higher than “String2.”
3 Continues execution at the given line label if “String1” is higher or equal to “String2."
4 Continues execution at the given line label if “String1” is lower than “String2.”
5 Continues execution at the given line label if “String1” is lower or equal to “String2.”

Example:

' Jump to 14809619000 : if the
' current call is from/to 14809619000
GotoIfStrValue (™ 14809619000 ”, [Digits], “ 14809619000 ”, 0)

14809619000:

Notes:

e When comparing strings, a string is considering higher than another string at the first instance of a character that is later in the
alphabet, i.e., “B” is higher than “A”. If one string is shorter than the other, then the shorter string is considered ‘lower’ than the
other string as long as it matches up to the end of the string.

Page 182

Technical Manual

For example, “Apple Mac” is considered higher than “Apple” because it is identical in the first 5 letters, but then has more
characters, so its length is longer, and so it is a higher value.

String comparisons are also case insensitive, so “Apple” equals “APPLE”.

Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 183

Mitel MiContact Center Office SDK 6.2

14.97 GotolfStrValueleft
GotolfStrValuelLeft

This command continues execution of a user action at a given line label based on the comparison of the given left part of two strings. If
the comparison is negative then execution carries on at the next line of the script.

This command is useful for comparing area codes of two telephone numbers without having to remove the non-area code part of both
telephone numbers first.

Syntax:

GotolfStrValueLeft(LineLabel, String1, String2, NumberChars, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,
based on the comparison between the “String1” and “String2.”
A line label is case insensitive, but must contain no spaces or punctuation.

e String1: The string to compare against “String2.”

e String2: The string to compare against “String1.”

e NumberChars: The number of characters to compare in both strings, starting from the leftmost character.

e Condition: This value defines how the “String1” is compared against “String2.”

Value Action

0 Continues execution at the given line label if the first “NumberChars” characters of “String1” is equal to
same number of characters in “String2.”

1 Continues execution at the given line label if the first “NumberChars” characters of “String1” does not ec
the same number of characters in “String2.”

2 Continues execution at the given line label if the first “NumberChars” characters of “String1” is higher th
the same number of characters in “String2.”

3 Continues execution at the given line label if the first “NumberChars” characters of “.Sring1” is higher or
equal to the same number of characters in “String2.”

4 Continues execution at the given line label if the first “NumberChars” characters of “String1” is lower the
same number of characters in “String2.”

5 Continues execution at the given line label if the first “NumberChars” characters of “String1” is lower or
to the same number of characters in “String2.”

Example:

' Jump to 1480 : if the current
' call is from/to local area code 1480

GotoIfStrValuelLeft (“ 1480 ”, [Digits], ™ 1480 ”, 4 , 0)

Page 184

Technical Manual

1480:

Notes:

e When comparing strings, a string is considering higher than another string at the first instance of a character that is later in the
alphabet, i.e., “B” is higher than “A.” If one string is shorter than the other, then the shorter string is considered ‘lower’ than the
other string as long as it matches up to the end of the string.

For example, “Apple Mac” is considered higher than “Apple” because it is identical in the first five letters, but then has more
characters, so its length is longer, and so it is a higher value.

e String comparisons are also case insensitive, so “Apple” equals “APPLE.”

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 185

Mitel MiContact Center Office SDK 6.2

14.98 GotolfStrValueLike
GotolfStrValueLike

This command continues execution of a user action at a given line label if one string expression matches another, using a “wildcard”
match. If the comparison is negative then execution carries on at the next line of the script.

A “wildcard” match allows for certain characters to represent one or more of any character. This is useful for checking a string to see if it
contains certain text.

Syntax:

GotolfStrValueLike(LineLabel, String1, String1, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,
based on the comparison between the “String1” and “String2.”
A line label is case insensitive, but must contain no spaces or punctuation.

e String1: The string to compare against “String2.”

e String2: The string to compare against “String1.” This string can contain special characters performed in the wildcard match, as

follows:
Character Description
* Represents zero or more characters
? Represents a single character
Represents a single numeric digit
[charlist] Represents any character contained within the brackets, e.g., “[A-Z]” matches any uppercase letter
while “[A-Za-z0-9]” will match any alphanumeric character.
[!charlist] Represents any character not contained within the brackets, e.g., “[!0-9]” matches any non-numeric
character.

e Condition: If this numerical value is 0, then execution continues at the specified line label if “String1” pattern matches the string
expression “String2.”

If this value is 1, then execution continues at the specified line label if “String1” does not pattern match string expression
“String2.”

Examples:

' Jump to SalesLine: if the current call
' was received on any of the sales lines.

GotoIfStrValuelLike (“SalesLine”, [DNIS], “*Sales*”, 0)

SalesLine:

Page 186

Technical Manual

The following table gives examples of “String1” and “String2,” and whether they would be considered a match.

String1 String2 Matches?
aBba a*a Yes

aBba a?a No

a*a al*]a Yes

aBa al*la No

1800 277537 1 800 #HHH#HH Yes

1 800 APPLES 1 800 #HHH#HHE No

A test [A-Z]* Yes

a test [A-Z]* No

Notes:

e If you need to insert one of the special characters into “String2” without it being interpreted as a special character, then wrap the
character in square brackets, e.g., [*]. The third example in “More Examples” is a demonstration of this.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 187

Mitel MiContact Center Office SDK 6.2

14.99 GotolfStrValueMid
GotolfStrValueMid

This command continues execution of a user action at a given line label if a subsection of one string matches the subsection of another
string. If the comparison is negative then execution carries on at the next line of the script.

Syntax:

GotolfStrValueMid(LineLabel, String1, String2, StartCharacter, NumberChars, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,
based on the comparison between the “String1” and “String2.”
A line label is case insensitive, but must contain no spaces or punctuation.

e String1: The string to compare against “String2."

e String2: The string to compare against “String1.”

e StartCharacter: The first character to begin the comparison at, where “1” represents the first character in both string.

o NumberChars: The number of characters to compare in both strings.

e Condition: This value defines how the “String1” is compared against “String2.”

Value Action
0 Continues execution at the given line label if “String1” is equal to “String2.”
1 Continues execution at the given line label if “String1” does not equal “String2.”
2 Continues execution at the given line label if “String1” is higher than “String2.”
3 Continues execution at the given line label if “String1” is higher or equal to “String2.”
4 Continues execution at the given line label if “String1” is lower than “String2.”
5 Continues execution at the given line label if “String1” is lower or equal to “String2.”

Example:

' Jump to Is213: if the middle of the [Datal] variable
' contains 213.

GotoIfstrValueMid (“Ext213”, [Datal], "“213”, 5, 3, 0)

Is213:

Notes:

Page 188

Technical Manual

o When comparing strings, a string is considering higher than another string at the first instance of a character that is later in the
alphabet, i.e., “B” is higher than “A”. If one string is shorter than the other, then the shorter string is considered ‘lower’ than the
other string as long as it matches up to the end of the string.

For example, “Apple Mac” is considered higher than “Apple” because it is identical in the first five letters, but then has more
characters, so its length is longer, and so it is a higher value.

e String comparisons are also case insensitive, so “Apple” equals “APPLE.”

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 189

Mitel MiContact Center Office SDK 6.2

14.100 GotolfStrValueRight
GotolfStrValuelLeft

This command continues execution of a user action at a given line label if the rightmost part of two strings match. If the comparison is
negative then execution carries on at the next line of the script.

This command is quicker than using the DataSetStrRight command to concatenate both strings to the appropriate length before
comparing, as well as not affecting the strings being compared.

Syntax:

GotolfStrValueRight(LineLabel, String1, String2, NumberChars, Condition)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution,
based on the comparison between the “String1” and “String2”.

A line label is case insensitive, but must contain no spaces or punctuation.
e String1: The string to compare against “String2.”
e String2: The string to compare against “String1.”
e NumberChars: The rightmost number of characters to compare in both strings.

e Condition: This value defines how the “String1” is compared against “String2.”

Value Action
0 Continues execution at the given line label if “String1” is equal to “String2.”
1 Continues execution at the given line label if “String1” does not equal “String2.”
2 Continues execution at the given line label if “String1” is higher than “String2.”
3 Continues execution at the given line label if “String1” is higher or equal to “String2.”
4 Continues execution at the given line label if “String1” is lower than “String2.”
5 Continues execution at the given line label if “String1” is lower or equal to “String2.”

Example:

' Jump to LineEndl0O: if the current call
' is on a line than ends with digits 10.

GotoIfStrValueRight (“LineEnd10”, [Line], “10”, 2, 0)

LineEndl0:

Page 190

Technical Manual

Notes:

e When comparing strings, a string is considering higher than another string at the first instance of a character that is later in the
alphabet, i.e., “B” is higher than “A”. If one string is shorter than the other, then the shorter string is considered ‘lower’ than the
other string as long as it matches up to the end of the string.

For example, “Apple Mac” is considered higher than “Apple” because it is identical in the first 5 letters, but then has more
characters, so its length is longer, and so it is a higher value.

e String comparisons are also case insensitive, so “Apple” equals equal “APPLE”.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 191

Mitel MiContact Center Office SDK 6.2

14.101 GotolfTimeBetween

GotolfTimeBetween

This command continues execution of a user action at a given line label if a given time lies inside a specific time range. If the
comparison is negative, execution carries on at the next line of the script.

Syntax:

GotolfTimeBetween(LineLabel, Time1, Time2, Time, IgnoreBadTimes)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing
execution, if “Time” falls between “Time1” and “Time2”.

A line label is case insensitive, but must contain no spaces or punctuation.

e Time1: The lower part of the time range to compare against. This is a string expression that will be evaluated as a time
based on the Windows Regional Settings. Examples include “15:30:00”, “9:30AM”, etc.

e Time2: The upper part of the time range to compare against. This is a string expression that will be evaluated as a time
based on the Windows Regional Settings. Examples include “15:30:00”, “9:30AM”, etc.

e Time: The time to compare against the time range defined by “Time1” and “Time2”. This is a string expression that will
be evaluated as a time based on the Windows Regional Settings. Examples include “15:30:00”, “9:30AM”, etc.

e IgnoreBadTimes: If this numerical value is 0, then if any of the time parameters cannot be interpreted as a time, an
error will be generated, and execution will stop.

If the value is 1, any invalid time parameters will be seen as the given time not falling into the specified range, and
execution will continue on the next line of the script.

Example:

' Jump to NightService: if the current time
' 1s outside working hours.

GotoIfTimeBetween (“NightService”, “5:29 PM”, “8:59 AM”, [MediumTime], O0)

NightService:

Notes:

e The values defining the time range, “Time1” and “Time2”, do not need to be sequential, and can roll over midnight. In
such an occurrence, the command will consider “Time” as being in the specified time range, if it occurs after “Time1,” or
before “Time2.”

e You can obtain the time on the local computer using the [ShortTime] and [LongTime] macro variables.

Page 192

Technical Manual

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be
one instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the
action.

Page 193

Mitel MiContact Center Office SDK 6.2

14.102 GotolfWeekDay
GotolfWeekDay

This command continues execution of a user action at a given line label if a given date falls on a specific day of the week. If the
comparison is negative, execution carries on at the next line of the script.

Syntax:
GotolfWeekDay(LineLabel, Date, Weekday, Condition, IgnoreBadDate)

Parameters:

e LineLabel: The line label that denotes the first line of code that the user action should jump to before continuing execution, if the
given date falls on the specific day of the week.

A line label is case insensitive, but must contain no spaces or punctuation.

e Date: The date that will be compared against the given day of the week in the “Weekday” parameter. This is a string expression
that is interpreted using the Windows Regional Settings.

e Weekday: This numerical value defines the weekday to compare against the date specified in the “Date” parameter. It can be
one of the following values:

Value Weekday

1 Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

N ool b~ |DN

Sunday

e Condition: This numerical value defines how to compare the weekday of the specified date with the “Weekday” parameter, as

follows:
Value Description

0 Continues execution at the given line label if the day of week for “Date” exactly matches the
“Weekday” parameter.

1 Continues execution at the given line label if the day of week for “Date” does not match the
“Weekday” parameter.

2 Continues execution at the given line label if the day of week for “Date” is higher than the “Weekday”
parameter.

3 Continues execution at the given line label if the day of week for “Date” is higher or equal to the
“Weekday” parameter.

4 Continues execution at the given line label if the day of week for “Date” is lower than the “Weekday”
parameter.

Page 194

Technical Manual

5 Continues execution at the given line label if the day of week for “Date” is lower or equal to the
“Weekday” parameter.

e IgnoreBadDates: If this numerical value is 0, then an invalid date in the “Date” parameter will generate an error, and execution
will stop.

If the value is 1, an invalid date in the “Date” parameter will be treated as if the day of week for “Date” did not match the
“Weekday” parameter, and execution will continue on the next line of the script.
Example:

' Jump to IsWeekEnd: if the current date

falls on a Saturday or Sunday.
GotoIfWeekDay (“IsWeekEnd”, , 6, 3, 0)

IsWeekEnd:

Notes:

e When you specify date arguments in this command it is advisable to use a long date format (, e.g.,) because the year part is
specified explicitly. Other date formats do not explicitly specify the year of a date. For instance, the dates and in short date
format would both be returned from Windows as “ ” when you used the [ShortDate] macro variable.

e Although you can use GotoXXX commands to go to a specific line label as many times as you want, there can only be one
instance of that line label in the user action, i.e., the subroutine defined by a line label should occur only once in the action.

Page 195

Mitel MiContact Center Office SDK 6.2

14.103 InputBox
InputBox

This command displays a prompt in a window for the user to enter some text. If the user subsequently clicks OK, the input is
stored in a given [Datan] macro variable.

Syntax:

InputBox(Prompt, Title, DefaultValue, DataVariable)

Parameters:

Prompt: The message to display to the user to prompt the user for input.

e Title: The titlebar text to display in the input window.

DefaultValue: The default value to display in the text area where the user enters their response.

DataVariable: A numerical value between 1 and 11 that depicts which macro variable to store the results in. The
number 1 will store the result in [Data1] macro variable, 2 will store the result in [Data2], and so on.

Example:

' Prompt the agent to enter in the service that

' the caller requires and place the answer into

' the [Data2] Macro Variable Reference.

InputBox (“What fruit do you require today?” + 10 + “Apples-1, Pears-2, Oranges-3”,“”,“3”, 2)
' End macro if nothing entered.

ExitMacroStrvValue ([Data2], “”, 1)

Page 196

Technical Manual

14.104 intAbout
intAbout

This command has been deprecated in version 4 of the CallViewer SDK.

Page 197

Mitel MiContact Center Office SDK 6.2

14.105 intAutoMacro

intAutoMacro

This command displays the Rules Manager in CallViewer .

Syntax:

intAutoMacro

Parameters:

None.

Example:

intAutoMacro

Notes:

Prior to version 4, this command displayed the list of automatic macros in the CallViewer Macro Manager. Automatic macros
were replaced by rules in version 4 of CallViewer .

Page 198

Technical Manual

14.106 intButtonsConfig
intButtonsConfig

This command has been deprecated in version 4 of the CallViewer SDK.

Page 199

Mitel MiContact Center Office SDK 6.2

14.107 intCallDetails
intCallDetails

This command displays the Call Details window for the currently selected call.

Syntax:

intCallDetails

Parameters:

None.

Example:

intCallDetails

Notes:

You can select a particular call in the call list using the CallSelect command.

Page 200

Technical Manual

14.108 intClearScreen

intClearScreen

This command has been deprecated in version 4 of the CallViewer SDK.

Page 201

Mitel MiContact Center Office SDK 6.2

14.109 intDebugWindow
intDebugWindow

This command displays the Simulation Window.

Syntax:

intDebugWindow

Parameters:

None.

Example:

intDebugWindow

Page 202

14.110 intExit
intExit

This command quits the CallViewer application.

Syntax:

intExit
Parameters:
None.

Example:

intExit

Page 203

Technical Manual

Mitel MiContact Center Office SDK 6.2

14.111 intGWin
intGWin

This command has been deprecated in version 4 of the CallViewer SDK.

Page 204

Technical Manual

14.112 intHotkeyMgr
intHotkeyMgr

This command has been deprecated in version 4 of the CallViewer SDK.

Page 205

Mitel MiContact Center Office SDK 6.2

14.113 intRefreshNetworkLink
intRefreshNetworkLink

This command has been deprecated in version 4 of the CallViewer SDK.

Page 206

Technical Manual

14.114 intSettingsCC
intSettingsCC

This command has been deprecated in version 4 of the CallViewer SDK.

Page 207

Mitel MiContact Center Office SDK 6.2

14.115 intSettingsGWin
intSettingsGWin

This command has been deprecated in version 4 of the CallViewer SDK.

Page 208

Technical Manual

14.116 intSettingsAdvanced
intSettingsAdvanced

This command has been deprecated in version 4 of the CallViewer SDK.

Page 209

Mitel MiContact Center Office SDK 6.2

14.117 intSettingsNetwork
intSettingsNetwork

This command has been deprecated in version 4 of the CallViewer SDK.

Page 210

Technical Manual

14.118 intSettingsWindow
intSettingsWindow

This command has been deprecated in version 4 of the CallViewer SDK.

Page 211

Mitel MiContact Center Office SDK 6.2

14.119 intSizeNormal

intSizeNormal

This command maximizes the main CallViewer window.

Syntax:

intSizeNormal

Parameters:

None.

Example:

intSizeNormal

Notes:

This command has no affect if the current “Look and Feel” does not support windows that can be maximized .

Page 212

Technical Manual

14.120 intSizeSmall

intSizeSmall

This command puts the main CallViewer window into “mini” mode.

Syntax:

intSizeSmall

Parameters:

None.

Example:

intSizeSmall

Notes:

This command has no effect if the current “Look and Feel” does not support a “mini” mode.

Page 213

Mitel MiContact Center Office SDK 6.2

14.121 LocalDataGet
LocalDataGet

This command retrieves a value from the user action’s local property set, and stores it in a given [Datan] macro variable.

Each user action has its own local property set that lasts for as long as that instance of the action is running. A local property set
consists of several named properties, and can be used as a convenient extension to the [Datan] macro variables.

Syntax:

LocalDataGet(PropertyName, DataVar)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to get the current value for. If the
property name does not exist, an error is generated.

e DataVar: This numerical value depicts the [Datan] macro variable that the property’s current value will be stored in. For
example, setting this value to 1 would store the property’s value in the [Data1] macro variable.

Example:

’ Get the macro name property from the local property set
’ and store it in Datal.

LocalDataGet (“MacroName”, 1)

Notes:

e The local property set contains some default values relating to the user action that it is running in, as follows:

Property Description
AutoMacro If this action was executed because a rule fired, this value will be “1”, otherwise it will be “0”.
MacroName The name of this action in .

e You can also use the GlobalDataGet command to get data from the global property set. The global property set allows for
properties to be shared between running instances of user actions, and the data lasts until loses connection with .

e You use the LocalDataSetStr and LocalDataSetNum commands to store information in the local property set for this user
action.

Page 214

Technical Manual

14.122 LocalDataSetNum

LocalDataSetNum

This command sets a value in the user action’s local property set to a given numeric value.

Each user action has its own local property set that lasts for as long as that instance of the action is running. A local property
set consists of several named properties, and can be used as a convenient extension to the [Datan] macro variables.

Syntax:

LocalDataSetNum(PropertyName, Value)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to set to the given value.
If the given property does not exist, then it is automatically created.

e Value: The numerical value to store in the local property set.

This value will remain in the local property set until the user action completes execution, or until it is overwritten with a
call to LocalDataSetNum or LocalDataSetStr.

Example:

' Store the contents of [Datal] in property “TempValue”.
LocalDatSetNum (“"TempValue”, [Datall])

Notes:

e You can also use the GlobalDataSetNum command to set data in the global property set. The global property set
allows for properties to be shared between running instances of user actions, and the data lasts until loses connection
with .

e You can use the LocalDataSetStr command to store a string value in a property.

Page 215

Mitel MiContact Center Office SDK 6.2

14.123 LocalDataSetStr
LocalDataSetStr

This command sets a value in the user action’s local property set to a given string value.

Each user action has its own local property set that lasts for as long as that instance of the action is running. A local property
set consists of several named properties, and can be used as a convenient extension to the [Datan] macro variables.

Syntax:

LocalDataSetStr(PropertyName, Text)

Parameters:

e PropertyName: This string value represents the name of an individual property that you want to set to the given value.
If the given property does not exist, it is automatically created.

e Text: The string value to store in the local property set.

This value will remain in the local property set until the user action completes execution, or until it is overwritten with a
call to LocalDataSetNum or LocalDataSetStr.

Example:

'Store the current account code in property “OldAccountCode”.

LocalDatSetStr (Y"OldAccountCode”, [AccountCode])

Notes:

e You can also use the GlobalDataSetStr command to set data in the global property set. The global property set allows
for properties to be shared between running instances of user actions, and the data lasts until loses connection with .

e You can use the LocalDataSetNum command to store a numerical value in a property.

Page 216

Technical Manual

14.124 MacroBtnRun

MacroBtnRun

This command executes one of the 12 button macros imported from CallViewer version 3. This command only exists for
support of existing version 3 macros, because it only executes macros that were created in version 3.x.

Syntax:
MacroBtnRun(ButtonNumber)

Parameter:

ButtonNumber: This numerical value depicts the button number from CallViewer version 3 that should be executed. It is a
value between 1 and 12.

Example:

' Run button macro 2.

MacroBtnRun (2)

Page 217

Mitel MiContact Center Office SDK 6.2

14.125 MessageBox

MessageBox

This command displays a message to the user, and waits for the user to choose a button.

Syntax:

MessageBox(Message, ButtonType, Title)

Parameters:

e Message: The message to display to the user in the message box.

e ButtonType: This numerical value indicates the buttons that should be available in the message box. It can also be used to
identify the type of message box to the user through an icon, as well identifying which button should be the default.

The buttons to display are indicated by one of the following values:

Value Button
0 Displays OK button only.
1 Displays OK and Cancel buttons.
2 Displays Abort, Retry, and Ignore buttons.
3 Displays Yes, No, and Cancel buttons.
4 Displays Yes and No buttons.
5 Displays Retry and Cancel buttons.

If you want to display an icon on the message box, add one of the following values to the number:

Value Icon
16 Displays a Stop icon.
32 Displays a Question Mark icon.
48 Displays an Exclamation Mark icon.
64 Displays an Information icon.

If you want to assert the default button, add one of the following values:

Value Default Button

0 First button is default.

256 Second button is default.

512 Third button is default.

For example, specifying “4 + 32 + 256” would display Yes and No buttons on the message box (4), with a question mark icon

Page 218

Technical Manual

(32), and the second button would be the default button (256).

e Title: The text to display in the titlebar of the message box.

Example:

A /r)

MessageBox (“Click OK to continue.”, 0+48,

Notes:

If you want to branch execution of the user action based on the button that the user clicks, you should use the GotolfMessageBox
command, which displays a message box to the user, and then branches execution based on the button clicked.

Page 219

Mitel MiContact Center Office SDK 6.2

14.126 MessageBoxCustom

MessageBoxCustom

This command displays a message to the user, and waits for the user to choose a button. If the user has not chosen a button within a
given time period, the message box is automatically closed.

Syntax:

MessageBox(Message, ButtonType, Title, Timeout)

Parameters:

e Message: The message to display to the user in the message box.

e ButtonType: This numerical value indicates the buttons that should be available in the message box. It can also be used to
identify the type of message box to the user through an icon, as well identifying which button should be the default.

The buttons to display are indicated by one of the following values:

Value Button

0 Displays OK button only.

1 Displays OK and Cancel buttons.

Displays Abort, Retry, and Ignore buttons.

Displays Yes, No, and Cancel buttons

Displays Yes and No buttons.

al bl ODN

Displays Retry and Cancel buttons.

If you want to display an icon on the message box, add one of the following values to the number.

Value Icon
16 Displays a Stop icon.
32 Displays a Question Mark icon.
48 Displays an Exclamation Mark icon.
64 Displays an Information icon.

If you want to assert the default button, add one of the following values:

Value Default Button
0 First button is default.
256 Second button is default.
512 Third button is default.

Page 220

Technical Manual

For example, specifying “4 + 32 + 256” would display Yes and No buttons on the message box (4), with a question mark icon
(32), and the second button would be the default button (256).

e Title: The text to display in the titlebar of the message box.

e Timeout: This numerical value defines the number of milliseconds to wait before the message box is automatically closed. It can
be a value between 0 and 60000 (60 seconds).

Example:

N4

MessageBoxCustom (“Click OK to continue.”, 0+48, , 10000)

Notes:

If you want to branch execution of the user action based on the button that the user clicks, you should use the GotolfMessageBox
command, which displays a message box to the user, and then branches execution based on the button clicked.

Page 221

Mitel MiContact Center Office SDK 6.2

14.127 MousePointer

MousePointer

This command changes the mouse cursor between an hourglass and the default pointer. It is a good idea to set the mouse
cursor to display an hourglass if the user action is going to do something for a while such that the user will not be able to
interact with the software.

Syntax:

MousePointer(DisplayHourglass)

Parameter:

DisplayHourglass: If this numerical value is set to 0, the mouse cursor is set to display the default cursor arrow.
If the value is set to 1, then the mouse cursor is set to display the hourglass cursor.

Example:

MousePointer (0)

Notes:

The mouse cursor is reset to the default cursor arrow when a user action completes execution.

Page 222

Technical Manual

14.128 MousePos

MousePos

This command sets the mouse cursor position on the screen to the given coordinates.

Syntax:

MousePos(x, y)

Parameters:

e X: This numerical value depicts the horizontal position on the screen of the mouse cursor, where 0 is the leftmost edge
of the screen. The value is measured in pixels.

e Y: This numerical value depicts the vertical position on the screen of the mouse cursor, where 0 is the topmost edge of
the screen. The value is measured in pixels.

Example:

MousePos (300, 100)

Page 223

Mitel MiContact Center Office SDK 6.2

14.129 ODBCClose
ODBCClose

This command closes a previously opened ODBC connection. If the connection has not been opened, then an error is
generated.

Syntax:

ODBCClose(Channel)

Parameter:

Channel: The channel number of the ODBC connection to close. This can be a value from 1 to 3.

Example:

' Close the first ODBC channel.
ODBCClose (1)

Notes:

By default, errors generated will stop execution of the macro. You can switch off this functionality with the SetErrorsFatal
command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

Page 224

Technical Manual

14.130 ODBCGetField
ODBCGetField

This command retrieves a piece of data from the current record of the given ODBC connection. Having opened an ODBC
connection with ODBCOpen, and then moved to the appropriate record with ODBCMove, you would use ODBCGetField to
obtain the contents of a database field.

Syntax:
ODBCGetField(Channel, FieldName, DataVar)

Parameters:

e Channel: The channel number of the ODBC connection to read a field value from. This can be a value from 1 to 3.

e FieldName: The name of the field in the database whose value is to be retrieved. This name will depend on the
database that you are trying to read information from.

e DataVar: This numerical value represents the number of the [Datan] macro variable that the result will be written to.
This can be between 1 and 11.

Example:

' Move to the first record of channel 1

ODBCMove (1, 0, 0)

' Get the contents of field "LastContactDate" into [Data4]
ODBCGetField (1, "LastContactDate", 4)

Notes:

By default, errors generated will stop execution of the macro. You can switch off this functionality with the SetErrorsFatal
command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

Page 225

Mitel MiContact Center Office SDK 6.2

14.131 ODBCMove
ODBCMove

This command moves the current record pointer for the given ODBC connection to the required position.
Syntax:
ODBCMove(Channel, MoveType, Movelndex)

Parameters:

e Channel: The channel number of the ODBC connection to move the current record pointer.. This can be a value from 1
to 3.

e MoveType: This is the type of move to perform, and can be one of the following values:

Move to the first record in the table
Move to the last record in the table
Move to the previous record in the table

Move to the next record in the table

A W N =~ O

Move to the given record in the “Movelndex”

e Movelndex: If the "MoveType" is 4, to move to a given record, then this field defines the record number to move to.

Example:

' Move to the last record in the results.

ODBCMove (1, 1)

Notes:

By default, errors generated will stop execution of the macro. You can switch off this functionality with the SetErrorsFatal
command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

Page 226

Technical Manual

14.132 ODBCOpen
ODBCOpen

This command opens an ODBC connection on a given channel, and at the same time performs a query on the ODBC
connection.

Syntax:
ODBCOpen(Channel, ConnectionString, QueryString)

Parameters:

e Channel: The channel number of the ODBC connection to open the connection on. This can be a value from 1 to 3.
The channel should not have an active connection on it, otherwise an error will be generated.

e ConnectionString: This string is the connection string to be passed to ODBC. This defines the ODBC driver to use,
other relevant information as to the location of the database, as well as the username and password. See the table
below for some example connection strings.

e QueryString: This string defines the database query to depict what data to retrieve from the given database, e.g.
"SELECT * FROM MyTable WHERE MyTable.ID=27;"
Connection Strings:

The connection string is very important as it defines the database type that is being connected to, and where it is. Some
common example connection strings are as follows:

Microsoft Access (no workgroup | Driver={Microsoft Access Driver (*.mdb)};

file) Dbg=C:\MyDatabase.mdb;Uid=Admin;Pwd=;

Microsoft Access (with Driver={Microsoft Access Driver (*.mdb)};

workgroup file) Dbg=C:\MyDatabase.mdb;SystemDB=C:\MyDatabase.mdw;

SQL Server Driver={SQL Server};
Server=ServerName;Database=pubs;Uid=sa;Pwd=password;

Oracle Driver={Microsoft ODBC for Oracle};
Server=ServerName;Uid=Username;Pwd=password;

You may need to contact the database administrator for information on what parameters are needed to successfully connect
via ODBC to the database.

Example:

' Open a SQL Server database and query it for records that
' have a field that matches the Caller ID.

DataSetStr (1, "Driver={SQL Server) ;Server=MYDB;Database=pubs;Uid=sa;Pwd=;")

DataSetStr (2, "SELECT * FROM Customer WHERE Customer.Phone='" + [Digits] + "';")
ODBCOpen (1, [Datal], [Data2])
Notes:

Page 227

Mitel MiContact Center Office SDK 6.2

e The ODBCOpen command blocks while it is accessing the database and performing the query. If the query is complex,
or the database is busy, then this could take time. Usually, the more restricting the query, the fewer results returned,
which can speed up execution of the command.

e By default, errors generated will stop execution of the macro. You can switch off this functionality with the
SetErrorsFatal command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.
This can be useful when testing your macro, since it sometimes takes a couple of attempts to find the correct
connection string for a database.

e Before calling ODBCMove to move to a given record, you should check that records have been returned at all using the
GotolfNoRecords command.

e You must close the connection with ODBCClose before attempting to open a new connection on the same channel, or
before the action ends.

Page 228

Technical Manual

14.133 ODBCSetFieldNum
ODBCSetFieldNum

This command updates a given field for the current record in an open database with a numeric value.

Syntax:

ODBCSetFieldNum(Channel, FieldName, NewValue)

Parameters:

e Channel: The channel number of the ODBC connection to. This can be a value from 1 to 3.
e FieldName: The name of the field in the database table that you wish to set.

o NewValue: The numerical value that you wish to set the given field for the current record to.

Example:

' Increment the "Count" field in the table by 1
ODCBGetField (1, "Count", 0, 1)
ODBCSetFieldNum (1, "Count", [Datal] + 1)

Notes:

e By default, errors generated will stop execution of the macro. You can switch off this functionality with the
SetErrorsFatal command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

e Some databases will be read-only, such that updating of fields will fail using this command.

e If you need to store a text-based value, use the ODBCSetFieldStr command instead.

Page 229

Mitel MiContact Center Office SDK 6.2

14.134 ODBCSetFieldStr
ODBCSetFieldStr

This command updates a given field for the current record in an open database with a string value.

Syntax:

ODBCSetFieldStr(Channel, FieldName, NewValue)

Parameters:

e Channel: The channel number of the ODBC connection to. This can be a value from 1 to 3.
e FieldName: The name of the field in the database table that you want to set.

e NewValue: The text value for which you want to set the given field for the current record.

Example:

' Store the Caller ID in the "Last Call" field
ODBCSetFieldStr (1, "Last Call", [Digits])

Notes:

e By default, errors generated will stop execution of the macro. You can switch off this functionality with the
SetErrorsFatal command. Having done so, the error is available using the [ErrorDesc] and [ErrorNum] macro variables.

e Some databases will be read-only, such that updating of fields will fail using this command.

e If you need to store a text-based value, use the ODBCSetFieldNum command instead.

Page 230

Technical Manual

14.135 PostMessage

PostMessage

This command puts a Windows message in a given window’s message queue, and then returns without waiting for the
corresponding window to process the message.

Syntax:

PostMessage(WindowTitle, Message, Param1, Param2)

Parameters:

o WindowTitle: The left part of the title of the application window to post a message to.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application

with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e Message: This numerical value identifies the Windows message to post to the given window. The actual values that can
be used are beyond the scope of this help, but are available in the “Windows Platform SDK”.

e Param1: This is additional message-dependent information, passed as the “wParam” parameter of the Windows
message.

e Parama2: This is additional message-dependent information, passed as the “IParam” parameter of the Windows
message.

Example:

' Post WM CLOSE to Notepad application.
PostMessage (“Notepad”, 16, 0, 0)

Notes:

e The use of this command is considered extremely advanced, and can lead to unexpected results. It is strongly
recommended that this command not be used unless you are a qualified developer, with experience of Windows
programming.

e The SendMessage command is similar, but waits for the message to be processed by the given window before
continuing.

Page 231

Mitel MiContact Center Office SDK 6.2

14.136 SendKeys
SendKeys

This command emulates sending a keystroke sequence to the currently active Windows-based application. Execution of the
user action does not continue until the keystrokes have been processed.

Syntax:

SendKeys(Keystrokes)

Parameter:

Keystrokes: This string represents the keystrokes that are to be sent to the currently active application.

Most keystrokes are represented by each individual character in the string, for example the string “apple” would emulate
pressing the “a” key, then “p,” “p,” “I,” and “e.”

You can emulate a key being pressed with Control, Shift, and/or Alt being pressed at the same time, with one of the following
modifiers:

Character Represents
Plus (+) Shift key
Percent (%) Alt key
Caret (") Control key

If you needed to emulate Control-Alt-X, you provide the text “*%x”. If you want to use the modifiers across several keys,
enclose the keys in parentheses, e.g., “%(fa)” emulates Alt-F followed by Alt-A.

There are several keys that you cannot easily provide in the string, such as the Escape key, or the function keys. To emulate
these keystrokes, use one of the following keywords in curly braces, e.g,. {ENTER}".

Keystroke Keyword
Backspace {BACKSPACE} or {BS} or {BKSP}
Break {BREAK}

Caps Lock {CAPSLOCK}
Clear {CLEAR}

Del {DELETE} or {DEL}
Down Arrow {DOWN}

End {END}

Enter {ENTER} or ~ (tilde)
Esc {ESCAPE} or {ESC}
Help {HELP}

Home {HOME}

Ins {INSERT}

Page 232

Technical Manual

Left Arrow {LEFT}

Num Lock {NUMLOCK}
Page Down {PGDN}
Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}

Up Arrow {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 {F7}

F8 {F8}

F9 {F9}

F10 {F10}

F11 {F11}

F12 {F12}

If you need to emulate a key being pressed several times, then enclose the key or keyword in curly braces, followed by a

space, and the number of times to repeat the key, e.g., “{ENTER 5}” would press the ENTER key five times.

If you need to type one of the special modifiers (%, #, +, or ~), enclose them in curly braces too, e.g., “5% " would press the 5
key followed by Alt+Space, whereas “5{%}” would type “5%”.

Example:

' Select all the text in the current control

' by pressing Control-End, then Control-Shift-Home.

SendKeys (" {END}"”)
SendKeys (“"+{HOME}")

' Access the Edit menu

SendKeys (“SEX")

Notes:

(E), and choose cut (X)

e This command can only emulate keystrokes to native Windows applications. If you need to send keystrokes to a

console window or MS-DOS application, use the SendKeysEx command instead.

Page 233

Mitel MiContact Center Office SDK 6.2

e If you want to emulate keystrokes without waiting for the application to process the keystrokes, use the
SendKeysNoWait command instead.

e Although square brackets (“[” and “I") are not special characters in the keystrokes string, they can be interpreted as
special in other applications, and so should be enclosed in curly braces too, e.g., rather than using “[Example]”, you

would use “{[}Example{]}".

Page 234

Technical Manual

14.137 SendKeysEx
SendKeysEx

This command emulates sending a keystroke sequence to the currently active application. Unlike the SendKeys command,
SendKeysEx can be used to emulate keystrokes in both Windows applications, as well as MS-DOS and console application
windows.

Syntax:

SendKeysEx(Keystrokes, PauseTime)

Parameters:

e KeyStrokes: This string represents the keystrokes that are to be sent to the currently active application. See the
SendKeys command for information on the format of this string.

e PauseTime: This numerical value defines the number of milliseconds to pause between each keystroke. The value can
be from 0 to 10000 (which is 10 seconds).

It is recommended that a value other than 0 be used for this setting. This command is emulating keystrokes at the
keyboard driver level, and while a human could not type 1000 keystrokes a second, SendKeysEx can! This can lead to
the keyboard buffer being filled, and then keystrokes are lost. A value somewhere between 10 and 50 often works well,
although experimentation with your chosen application is a good idea.

Example:

' Activate MS-DOS window.
AppActivateLike (“MS-DOS”)

YieldToOs

' Send DIR to MS-DOS window.

SendKeysEx (“DIR”, 50)

' Let MS-DOS screen repaint the actions
' caused by sending the keystrokes.
YieldToOs

' Send Enter key.

SendKeysEx (“ENTER”, 50)

Notes:

e Because this command emulates the keyboard at a driver level, it is a good idea to give the application receiving the
keystrokes a chance to catch up. There are two ways of achieving this. First, place YieldToOs commands after
keystrokes that might affect the screen updating, such as displaying menus or dialogs. Secondly, use several
SendKeysEx commands with short keystroke strings, rather than one command with a really long keystroke string.

e There may be some console applications that still cannot receive emulated keystrokes from this command. In such an
instance, use ClipboardSetText to copy your required text into the clipboard, and then use SendKeysEx to the console
window to emulate using the system menu, and selecting Edit, then Paste.

Page 235

Mitel MiContact Center Office SDK 6.2

14.138 SendKeysNoWait
SendKeysNoWait

This command emulates sending a keystroke sequence to the currently active Windows-based application. Unlike the
SendKeys command, SendKeysNoWait continues execution on the next line of the script without waiting for the keystrokes to
be processed.

Syntax:

SendKeysNoWait(Keystrokes)

Parameter:

KeyStrokes: This string represents the keystrokes that are to be sent to the currently active Windows-based application. See
the SendKey command for information on the format of this string.

Example:

' Post a keystroke sequence to windows that would change

' the current MiCC Office Server if the Network Settings

' Window was open.

SendkeysNoWait (*$S”) ' Goto Server control.

SendkeysNoWait ("CTISERVER2”) ' Enter new MiCC Office Server name.
SendkeysNoWait ("ENTER”) ' Save the new settings.

' Open the Network Settings Window.

intSettingsNetwork

Notes:

If you want to emulate keystrokes and wait for the application to process the keystrokes, use the SendKeys command instead.

Page 236

Technical Manual

14.139 SendMessage

SendMessage

This command puts a Windows message in a given window’s message queue, and then waits for the corresponding window to
process the message.

Syntax:
SendMessage(WindowTitle, Message, Param1, Param2)

Parameters:

o WindowTitle: The left part of the title of the application window to send a message to.
The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still find an open application

with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator” appear
identical.

e Message: This numerical value identifies the Windows message to send to the given window. The actual values that
can be used are beyond the scope of this document, but are available in the “Windows Platform SDK.”

e Param1: This is additional message-dependent information, passed as the “wParam” parameter of the Windows
message.

e Parama2: This is additional message-dependent information, passed as the “IParam” parameter of the Windows
message.

Example:

' Immediately send WM CLOSE to Notepad application.
SendMessage (“Notepad”, 16, 0, 0)

Notes:

e The use of this command is considered extremely advanced, and can lead to unexpected results. It is strongly
recommended that this command not be used unless you are a qualified developer, with experience of Windows
programming.

e The PostMessage command is similar, but does not wait for the message to be processed by the given window before
continuing.

Page 237

Mitel MiContact Center Office SDK 6.2

14.140 SetAccountCode
SetAccountCode

This command sets the account code on an external (trunk line) call at the given extension.
If there are no external trunk line calls at the given extension, an error occurs.

Syntax:

SetAccountCode(Extension, Callltem, AccountCode, UseCallControl)

Parameters:

e Extension: The extension device to set the account code at. If a blank string is specified, then the extension assigned
to the running instance of will be used.

e Callltem: The index of the call to set the account code on. Calls in the list are identified as 1 for the first call in the call
list, 2 for the second call etc. A value of 0 will instruct to automatically set the account code on the first external call at
the given extension.

In fact, if the call specified at the given extension is not an external call, the next call at the extension is used instead.

e AccountCode: The account code to set on the given call. If the “UseCallControl” parameter is 1, this parameter has a
maximum length of 12 characters, otherwise it has a maximum length of 50 characters.

The account code in this parameter will overwrite any existing account code active on this call.
e UseCallControl: If this numerical value is 0 then the account code bypasses the telephone system, and is processed

only internally within . This allows for longer account codes, and support for the account code functionality across all
telephone systems.

Example:

' Enter account code 999 at extension 200 via the
' telephone system.

SetAccountCode (“200”, 0, “9997, 1)

Notes:

You can generically find the device number of the extension associated with the current installation of t by using the
[LocalExtension] macro variable.

Page 238

Technical Manual

14.141 SetACDAgentState
SetACDAgentState

This command changes that ACD agent state of a specified agent ID at the given extension.

Syntax:

SetACDAgentState(Extension, AgentID, AgentState, ACDGroup)

Parameters:

e Extension: The extension device to set the agent state at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

e AgentID: The ID that defines the agent whose state is to change.

e AgentState: This numerical value depicts the new agent state to place the given extension / agent in. It can be one of the
following values:

Value Description
0
1
2 Changes the specified agent’s state to “Free.”
3 Changes the specified agent’s state to “Busy (Call).”
4 Changes the specified agent’s state to “Busy (E-mail).”
5 Changes the specified agent’s state to “Wrapup (Call).” This is performed in such a way that any telep

system-based wrap-up timer is ignored, and as such the agent will remain in the wrap-up state indefin
or at least until they enter the free state.

6

7 Changes the specified agent's state to “Free (E-mail).”

8 Changes the specified agent's state to “Wrapup (E-mail).”
e ACDGroup:

Example:

' Log Agent 470 in at extension 200.
SetACDAgentState (“200”, “4707, 1, “7)

Notes:

e If you are changing the agent state at the extension assigned to , to a state other than log in or log out, you can use the
[ACDAgentID] macro variable to obtain the Agent ID of the agent logged in to this extension right now.

e The agent must already be logged in when changing an agent’s state to anything other than log in.

Page 239

Mitel MiContact Center Office SDK 6.2

e You can generically find the device number of the extension associated with the current installation of by using the
[LocalExtension] macro variable reference.

Page 240

Technical Manual

14.142 SetErrorsFatal

SetErrorsFatal

This command controls whether errors generated by the DDExxx, Filexxx, and ODBCxxx commands cause macro execution to
be halted. By default, errors are fatal and so halt macro execution. Using this command to change this, causes the supported
commands to carry on as if they had been successful, but store the resulting error and error code in macro variables so that
they can be checked by the caller.

Syntax:

SetErrorsFatal(ErrorsFatal)

Parameters:

ErrorsFatal: If this numerical value is 1, then errors will be fatal. If an error occurs in the DDE, File, or ODBC
commands, then macro execution will halt.

If this numerical value is 0, then errors will be ignored in the DDE, File, or ODBC commands. The macro will have
access to the last error via the [ErrorDesc] and [ErrorNum] macro variables.

Example:

' Switch off errors before opening a file..
SetErrorsFatal (0)

FileOpen(1l, "C:\MyFile.txt",1)

' Jump to "GotError" if [ErrorNum] isn't O..

GotoIfNumVal ("GotError", [ErrorNum], 0, 1)

Notes:

This command only affects the DDExxx, Filexxx, and ODBCxxx commands. All other commands will continue to be fatal if they
generate an error.

Page 241

Mitel MiContact Center Office SDK 6.2

14.143 SetForwardState
SetForwardState

This method changes the forward status of an extension. The method returns True if successful, or False otherwise.
Syntax:
SetForwardState Extension, ForwardType, Destination, Enable

Parameters:

e Extension: The extension device to set the forward state at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

e ForwardType: This numerical value defines the type of forwarding to set. It can be one of the following values:

Value Description
0 Disables any forwarding or diverts at the given extension.
1 Enables / disables the forwarding of all calls to the forwarding device in “Destination.”
2 Enables / disables the forwarding of unanswered calls to the forwarding device in “Destination.”
3 Enables / disables the forwarding of calls when the device is busy to the forwarding device in “Destinatiol
4 Enables / disables the forwarding of both unanswered calls and calls when the device is busy, to the
forwarding device in “Destination.”

e Destination: This is the device that the call will be forwarded to, when enabling a forwarding type.

e Enable: If this value is False, the corresponding forwarding type is disabled.
If the value is True, the corresponding forwarding type is enabled.

This setting is ignored when setting forward type 0 on the Inter-Tel Axxess / Mitel 5000 Communications Platform System.

Example:

' Forward all calls at extension 200 to 213
axCallview.SetForwardState “200”, 1, “213”, True

' Disable forwarding of calls at extension 200
axCallview.SetForwardState “200”, 1, “, False

' Forward calls at this extension to 299, if the device is busy

axCallview.SetForwardState “”, 3, “299”, True

Page 242

Technical Manual

14.144 SetlniSettingNum
SetIniSettingNum

This command is used to store or update a setting in the CVMACRO.INI file to a numerical value. The settings in this fle can be
used to provide specifical configuration for user-defined macros.

Syntax:
SetlniSettingNum(SectionName, KeyName, NewValue)

Parameters:

° SectionName: This string value represents the name of the section in the INI file where the setting will be
stored. Sections are denoted in INI files by wrapping them in square brackets, e.g. "[SectionName]".

° KeyName: This string value represents the name of the value in the INI file to set. The key to be set must fall
within the section denoted by the "SectionName" parameter.

° NewValue: This numeric value represents the data to be written to the setting in the file.

Example:

' Store a number in the "SearchAllPhoneFields" option of the
' [Options] section.

SetIniSettingNum("Options", "SearchAllPhoneFields", 1)

Notes:

You can retrieve settings from the CVMACRO.INI file using the GetIniSetting command.

Page 243

Mitel MiContact Center Office SDK 6.2

14.145 SetlniSettingStr
SetlniSettingStr

This command is used to store or update a setting in the CVMACRO.INI file to a text-based value. The settings in this fle can
be used to provide specifical configuration for user-defined macros.

Syntax:

SetlniSettingStr(SectionName, KeyName, NewValue)

Parameters:

° SectionName: This string value represents the name of the section in the INI file where the setting will be
stored. Sections are denoted in INI files by wrapping them in square brackets, e.g. "[SectionName]".

° KeyName: This string value represents the name of the value in the INI file to set. The key to be set must fall
within the section denoted by the "SectionName" parameter.

° NewValue: This text-based value represents the data to be written to the setting in the file.

Example:

' Store the last CLI in the "CLI" key of the
' "Last Call Info" section.

SetIniSettingStr("Last Call Info", "CLI", [Digits])

Notes:

You can retrieve settings from the CVMACRO.INI file using the GetIniSetting command.

Page 244

Technical Manual

14.146 SetKeyState
SetKeyState

This command is used to set the key state of a given key on the keyboard. This can be used to toggle Num Lock and Caps Lock on and
off

Syntax:

SetKeyState(Key, State)

Parameters:

e Key: This is a numerical value that depicts which key is going to be toggled. Potential values are as follows:

Value Key
20 Caps Lock
144 Num Lock
145 Scroll Lock

e State: If this numerical value is 0, the given key is toggled off, e.g., caps lock is turned off.

If the value is 1, the given key is toggled, so if it is on it is switched off, and vice versa.

Example:

' Set the toggle state of the Num Lock key on.
SetKeyState (144, 1)

Notes:

Although this command can be used to simulate key presses, you are recommended to use SendKeys or SendKeysEx to simulate key
presses.

Page 245

Mitel MiContact Center Office SDK 6.2

14.147 SetStatusLine
SetStatusLine

This command sets the text being displayed on the status line of CallViewer .

Syntax:

SetStatusLine(StatusText)

Parameter:

StatusText: The text to display in the status bar.

Example:

SetStatusLine (“Running user action...”)

Notes:

Not every “Look and Feel” has a status bar. An error is not thrown if calling this command with a window that has no status bar.

Page 246

Technical Manual

14.148 SetTrunkCallParam
SetTrunkCallParam

This command updates a piece of information against the current call. This can be useful for using a call's Caller ID to identify
an unrecognized contact, and then updating the "Field2" property against the call, so that the contact becomes recognized .

Syntax:

SetTrunkCallParam(Extension, Callindex, Parameter, NewValue)

Parameters:

° Extension: The extension device to set the forward state at. If a blank string is specified, then the extension
assigned to the running instance of Callviewer will be used.

° Callindex: The call index of the call you wish to update. This can be 0, which will cause Client to pick the first
available call and update that.

° Parameter: This value depicts which field you want to update against the given call, as follows:
0 Telephone Number
1 Field 2, usually Company Name
2 Field 3 (user-defined)
3 Field 4 (user-defined)
4 Field 5 (user-defined)
5 Field 6 (user-defined)
° NewValue: This string value depicts the new value to store against this item of the call.
Example:

' Update Field2 of the current call with the results of the
' DDE query on DDE channel 1..
SetTrunkCallParam("", 0, 1, [DDE1l])

Notes:

If an unrecognized call is updated such that the "Field2" parameter is non-blank, then the Server will treat the call as having
been recognized , which will improve the historical and real-time statistics related to calls recognized . However, when the same
caller rings in again, they will not be identified, and the macro command would have to be used again in a similar fashion.

Page 247

Mitel MiContact Center Office SDK 6.2

14.149 SetVolume

SetVolume

This command changes the volume of the given extension.

Syntax:

SetVolume(Extension, VolumeType, VolumelLevel, Save)

Parameters:

e Extension: The extension device to set the volume at. If a blank string is specified, then the extension assigned to the running
instance of CallViewer will be used.

e VolumeType: This numerical value defines the type of volume that is to be changed.

Value Description
0 Context Specific — this option changes the volume based on the current state of the extension, e.g., if
extension is alerting, the “alerting” volume is altered.
1 Alerting volume.
2 Off hook tone volume.
3 Internal call volume.
4 External call volume.

Currently, only the “context specific” option is supported by the telephone systems.

e VolumeLevel: This numerical value depicts the new volume level as follows:

A value of 1 increases the volume level by 1, while a value of 2 decreases the volume level by 1. You can also use a value of 0
that does not change the volume level, but which can be used with the “Save” parameter to save the current volume level.

e Save: This numerical value is 1 if the new volume level is to be saved for the given volume type. If it is 0, the volume level is
changed, but not persisted. After a new call starts, the volume will be at its previous level.

Example:

' Increase the volume at extension 200

' by one level

SetVolume (Y2007,

Notes:

(on the Inter-Tel Axxess).

1, 1)

T his command requires OAI Protocol V05.10 or later, or MiTAI.

Page 248

Technical Manual

14.150 Shell
Shell

This command launches the given application, specified using its filename. If the file cannot be found, or a problem occurs
launching the file, an error is generated.

Syntax:

Shell(Filename)

Parameter:

Filename: This string value is the fully pathed filename of the application to launch, e.g., C:\WINDOWS\NOTEPAD.EXE.

Example:

' Run Microsoft Access.

Shell (“C:\MSOFFICE\ACCESS\MSACCESS.EXE")

Notes:

e The ShellEx command provides more functionality than this command, allowing you to pass command line parameters
as well.

e Using the YieldToOs command after the application launches will give it time to itself before subsequent script lines are
processed.

Page 249

Mitel MiContact Center Office SDK 6.2

14.151 ShellEx
ShellEx

This command launches an application with specific command line options. If the application file cannot be found, or a problem
occurs launching the file, an error is generated.

Syntax:
ShellEx(Filename, CommandLine)

Parameters:

e Filename: This string value is the fully pathed filename of the application to launch, e.g.,
C:\WINDOWS\NOTEPAD.EXE.

e CommandLine: This string is the command line parameters to pass to the application. The contents of this string will
depend on the application being launched.

Example:

' Run Microsoft Access and load the customer database.

ShellEx (“C:\MSOFFICE\ACCESS\MSACCESS.EXE”, “C:\DBASE\CUST.MDB”)

Notes:

Using the YieldToOs command after the application launches will give it time to itself before subsequent script lines are
processed.

Page 250

Technical Manual

14.152 Wait
Wait

This command waits for a given number of milliseconds to elapse before execution of the user action continues
Syntax:

Wait(Duration)

Parameter:

Duration: This numeric value depicts the time in milliseconds that the user action should wait for.

Example:

' Pause for 1 second.

Wait (1000)

Page 251

Mitel MiContact Center Office SDK 6.2

14.153 WaitAppTitle
WaitAppTitle

This command pauses execution of the user action until a given application window changes its titlebar text to a given string.

If the specified window cannot be found, an error will occur.

Syntax:

WaitAppTitle(WindowTitle, NewWindowTitle, IgnoreErrorFlag)

Parameters:

o WindowTitle: The left part of the title of the application window to pause execution for until the title changes.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

o NewWindowrTitle: The left part of the new title of the application window. When the titlebar text's leftmost part matches
this string, execution of the user action will continue.

The name that appears in the titlebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator.” The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e IgnoreErrorFlag: If this numerical value is 0, any errors that occur will cause execution of the user action to stop.

If the value is 1, any errors will be ignored, and execution will continue on the next line of the script.

Example:

AppActivatelLike ("MS-DOS”) ' Activate MS-DOS window.
YieldToOS

' Place 5 key Escape sequence into clipboard.
ClipboardSetText ({27 5})

SendKeys ("% EP”) ' “Paste” into application.

' Pause until processed.

WaitAppTitle (“Paste MS-DOS”, “MS-DOS”, 1)

Notes:

e This command can be useful when integrating with MS-DOS or Console-based applications and the clipboard paste
method of inserting text into the window is being . When keystrokes are sent this way to an MS-DOS or Console
window, they are not processed immediately so keystrokes sent later in a user action are completely ignored. To
combat this, execution needs to be paused until the MS-DOS or Console window has finished processing the
keystrokes.

e While the MS-DOS/Console window processes the keystrokes, it displays “Paste - ” on the application window's titlebar
in front of the normal titlebar text. You can use the WaitAppTitle command to pause execution until the titlebar text
changes back to normal again.

Page 252

Technical Manual

e You should always try to use the SendkeysEx command to send MS-DOS or Console based applications keystrokes.
You should only use the clipboard paste method if the SendkeysEx command cannot be used.

e This command can hang the Windows environment indefinitely should the titlebar text of a window not change. A better
command to use instead is WaitAppTitleTimeOut. This allows the command to timeout after a given period, should the
titlebar text not change.

Page 253

Mitel MiContact Center Office SDK 6.2

14.154 WaitAppTitleTimeOut
WaitAppTitleTimeOut

This command pauses execution of the user action until a given application window changes its titlebar text to a given string.
This command differs from WaitAppTitle by allowing for a user-definable timeout to occur, should the titiebar text not change.

If the specified window cannot be found, an error will occur.
Syntax:
WaitAppTitleTimeOut(WindowTitle, NewWindowTitle, IgnoreErrorFlag, Timeout, TimeoutNotify)

Parameters:

e WindowTitle: The left part of the title of the application window to pause execution for until the title changes.

The name that appears in the titiebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

o NewWindowrTitle: The left part of the new title of the application window. When the titlebar text's leftmost part matches
this string, then execution of the user action will continue.

The name that appears in the titiebar need not be fully specified. For instance, “Calc” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e IgnoreErrorFlag: If this numerical value is 0, any errors that occur will cause execution of the user action to stop.

If the value is 1, any errors will be ignored, and execution will continue on the next line of the script.

e Timeout: The duration, in milliseconds, to wait for the titlebar text to change. The value that should be used here will
depend on the reason why you are waiting for the titlebar to change, although extremely short or extremely long values
are not advisable.

e TimeoutNotify: If this numerical value is 0 when a timeout occurs, execution will continue on the next line of the script,
as if the titlebar text had changed.

If the value is 1, a timeout will generate an error and stop execution of the user action.

Example:

AppActivatelLike ("MS-DOS”) ' Activate MS-DOS window.
YieldToOS

' Place 5 key Escape sequence into clipboard.
ClipboardSetText ({27 5})

SendKeys ("% EP”) ' “Paste” into application.

' Wait up to 1 second for keystrokes to get processed, but
!

continue anyway if 1 second elapse period is reached.

WaitAppTitleTimeOut (“Paste MS-DOS”, “MS-DOS”, 1, 1000, O0)

Page 254

Technical Manual

Notes:

e This command can be useful when integrating with MS-DOS or Console based applications and the clipboard paste
method of inserting text into the window is being . When keystrokes are sent this way to an MS-DOS or Console
window, they are not processed immediately so keystrokes sent later in a user action are completely ignored. To
combat this, execution needs to be paused until the MS-DOS or Console window has finished processing the
keystrokes.

e While the MS-DOS/Console window processes the keystrokes, it displays “Paste - ” on the application window's titlebar
in front of the normal titlebar text. You can use the WaitAppTitleTimeout command to pause execution until the titiebar
text changes back to normal again.

e You should always try to use the SendKeysEx command to send MS-DOS or Console based applications keystrokes.
You should only use the clipboard paste method if the SendKeysEx command cannot be used.

Page 255

Mitel MiContact Center Office SDK 6.2

14.155 YieldToOs
YieldToOs

This command causes to yield the user action execution so that Windows can process events and finish multi-tasking
operations.

This is usually required when the user action has just performed some form of integration with another application, e.g.,
selecting a menu item, or opening a window. Such activities will require some processing by the other application, and if the
user action just continued straight away with the next line of the script, then the other application may not be ready to receive
further commands, and so the user action would fail. By calling YieldToOs, the user action allows the other application to
process any outstanding requests it has, such as completing the opening of a window, repainting the screen, or finishing off a
menu item selection.

You would normally call YieldToOs after any SendKeys or SendKeysEx command, as well as any of the AppXXX commands
that open or move windows.

Syntax:

YieldToOS

Example:

' Launch Notepad

Shell (“C:\WINDOWS\NOTEPAD.EXE")

' Wait for the application to open
YieldToOs

' Now send keystrokes to application...

Notes:

e Some operations may take a long time to complete, e.g., a search in a database. YieldToOs returns as soon as the
application finishes processing events, which will normally be before a search or similar activity completes. In such
scenarios you may have to use Wait to pause execution, however that is very indeterminate.

e You may find that the application provides some form of notification when such a process as a search completes, e.g., a
dialog opens, or a titlebar changes, or a DDE variable is set. It is better to use something determinate, such as one of
these examples, to judge when such a long process has completed. YieldToOs is more for ensuring that Windows is
ready to accept user input again.

e When first performing an integration, you are better off using YieldToOs extensively, and keeping keystrokes sent via
SendKeys or SendKeysEx to short sequences of keystrokes. The overhead on YieldToOs is quite small, so there is
little or no performance overhead from calling it repeatedly, and it will ensure that your user action is more likely to work
on all systems, rather than just working on your test system, and failing on other user’s computers.

Page 256

Technical Manual

14.156 Macro Variables

This section details the macro variables that are available in the Callview Macro language. Remember that variables are only
treated as variables when enclosed in square brackets, e.g., [AccountCode].

Page 257

Mitel MiContact Center Office SDK 6.2

14.156.1 AreaPrefix

AreaPrefix

This is a string representing the local area telephone number prefix. It is the value entered into the “Local Area Prefix” setting

within MiCC Office Server .
This string is blank if CallViewer is not connected to the MiCC Office Server .

Page 258

Technical Manual

14.156.2 AccountCode

AccountCode

This is a string value that depicts the last account code entered in against the current call in the call list.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 259

Mitel MiContact Center Office SDK 6.2

14.156.3 ACDAgentID
ACDAgentID

This is a string value that depicts the ACD agent ID that is currently logged in to the extension device that CallViewer is

associated with.
If the extension is not logged in with an agent ID, this variable returns an empty string.

Page 260

Technical Manual

14.156.4 ACDLoginCnt
ACDLoginCnt

This is a variable depicting the number of times that the extension associated with CallViewer has logged into a “non-agent ID”
type hunt group.

Page 261

Mitel MiContact Center Office SDK 6.2

14.156.5 ACDLoginCntAgID
ACDLoginCntAgID

This is a variable depicting the number of times that an ACD agent has logged into an “agent ID” type hunt group at the
extension device that CallViewer is associated with in the current session.

Page 262

Technical Manual

14.156.6 ACDStatus
ACDStatus

This is a variable depicting the ACD agent status of the extension device that CallViewer is associated with.
The value can be one of the following:

Value Description

0 Logged Out

1 Logged In

Free

Busy (Call)

Busy (E-mail)

Wrapup (Call)

Busy N/A (DND)

Wrapup (E-mail)

Ol Nl M|l O®|DN

Free (E-mail)

Page 263

Mitel MiContact Center Office SDK 6.2

14.156.7 CallAns
CallAns

This is a variable that equals 1 if the current call is answered, or 0 if unanswered.
For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 264

Technical Manual

14.156.8 CallAnsTime
CallAnsTime

This is a string value that depicts the answer date/time for the current call in the call list. The call answer date/time is in long
format as defined in the International/Regional Settings section of the Windows Control Panel. If the current call is not
answered, this variable returns an empty string.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 265

Mitel MiContact Center Office SDK 6.2

14.156.9 CalICLI
CalilCLI

This is a variable that equals 1 if was received for the current call, or 0 if no was received.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 266

Technical Manual

14.156.10 CallContact
CallContact

This is a variable that equals 1 if the received or digits for the current call was identified by the Telephone Number Import, or O if
the contact was not identified. Calls that were not received with will always return O for this variable.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 267

Mitel MiContact Center Office SDK 6.2

14.156.11 CallCtrl
CallCtrl

This is a variable that equals 1 if CallViewer ’s call control functionality is currently enabled, or O if it is disabled.

Call control can be enabled or disabled from the Enable Call Control option on the Call Control tab of the Options dialog. If the
setting is disabled, no call control capability is available in CallViewer , either from the CallViewer Macro Language or from the

CallViewer user interface.

Page 268

Technical Manual

14.156.12 CallHeld
CallHeld

This is a variable that equals 1 if the current call is on hold, of 0 if the call is not held.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 269

Mitel MiContact Center Office SDK 6.2

14.156.13 Callint
Callint

This is a variable that equals 1 if the current call is an internal one or 0 if the call is external.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 270

Technical Manual

14.156.14 CallMediaType
CallMediaType

This is a string value that represents the type of media for the contact that caused the rule to execute this user action. It can be one of
the following values:

Value Description

CALL The contact is a telephone call. A particular call event caused the rule to automatically execute this actio
Alternatively, a call was selected in the CallViewer call list if the action was not executed by a rule.

EMAIL The contact is a routed e-mail message. A particular e-mail event caused the rule to automatically execu
this action.

Page 271

Mitel MiContact Center Office SDK 6.2

14.156.15 CallOut
CallOut

This is a variable that equals 1 if the current call is an outbound call, or 0 if the call is inbound.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Note: The direction of the call is determined by how the call started on the current extension. For example, an external call may
have been to an external party, but subsequently transferred to another extension; in such an instance the call is considered
inbound for the receiving extension, since it received a call, rather than made a call.

Page 272

Technical Manual

14.156.16 CallRingTime
CallRingTime

This is a variable that depicts the ring time in seconds for the current call in the call list. If the current call is not answered, this
variable returns the number of seconds that the call has been waiting for.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 273

Mitel MiContact Center Office SDK 6.2

14.156.17 Calls
Calls

This is the number of active calls in the call list at this moment in time.

Page 274

Technical Manual

14.156.18 CallSelected
CallSelected

This is a variable that represents the index of the currently selected call in the call list. The first call in the list is “1,” the next “2,”
and so on. If no call is selected in the call list, the value is “0.”

You can select a particular call in the call list using the CallSelect command.

Page 275

Mitel MiContact Center Office SDK 6.2

14.156.19 CallSerialNo
CallSerialNo

This is the unique serial number of the current call in the call list. MiCC Office Server generates the serial number internally.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can use call serial number to tag records in your database, and subsequently map your database records to call log
information in the MiCC Office Server databases. The serial number is written to the “TTSerialNo” field in the MiCC Office
Server databases.

Page 276

Technical Manual

14.156.20 CallSource

CallSource

This variable is similar to the [CallSelected] variable, in that it returns the index of the current call in the call list. However, if the
action was executed because a rule fired, this variable returns the index of the call that caused the rule to fire, regardless of the

selected call in the call list.
Its main use is for actions that are executed because a rule fired, where it returns the index of the call.

Page 277

Mitel MiContact Center Office SDK 6.2

14.156.21 CallStartTime
CallStartTime

This is a string value that depicts the start date/time for the current call in the call list. The date/time is in the long date format as
defined in the International / Regional section of the Windows Control Panel.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 278

Technical Manual

14.156.22 CallWasOnHold
CallwWasOnHold

This is a variable that equals 1 if the current call was on hold when last received an update about the call from . If the call was
not on hold at the time of the last update, this variable equals 0.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 279

Mitel MiContact Center Office SDK 6.2

14.156.23 CanCallAnswer

CanCallAnswer

This is a variable that equals 1 if the Answer call control feature is available at this moment, or equals 0 if the Answer feature is

not currently available.
Typically, answering is available if the following conditions are met:

e There is a call alerting the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports answering calls via call control.

e The license obtained by CallViewer allows calls to be answered.

Page 280

Technical Manual

14.156.24 CanCallConf
CanCallConf

This is a variable that equals 1 if the Conference call control feature is available at this moment, or equals 0 if the feature is not
currently available.
Typically, conference is available if the following conditions are met:

e There are answered or held calls at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports conferencing calls via call control.

e The license obtained by CallViewer allows calls to be conferenced.

Page 281

Mitel MiContact Center Office SDK 6.2

14.156.25 CanCallDial
CancCallDial

This is a variable that equals 1 if the Dial call control feature is available at this moment, or equals 0 if the feature is not
currently available. The Dial feature enables the user to make calls from their extension.

Typically, dialing is available if the following conditions are met:

e The extension associated with CallViewer is idle, or has an exclusively held call present.
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports making calls via call control.

e The license obtained by CallViewer allows calls to be dialed .

Page 282

Technical Manual

14.156.26 CancCallDialDig
CanCallDialDig

This is a variable that equals 1 if the Dial Digits call control feature is available at this moment, or equals 0 if the feature is not
currently available.
Typically, dialing of digits is available if the following conditions are met:

e There is an answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports dialing digits via call control.

e The license obtained by CallViewer allows digits to be dialed .

Page 283

Mitel MiContact Center Office SDK 6.2

14.156.27 CanCallDrop
CanCallDrop

This is a variable that equals 1 if the Drop call control feature is available at this moment, or equals 0 if the feature is not
currently available.
Typically, dropping calls is available if the following conditions are met:

e There is an outbound or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.

e The telephone driver supports dropping calls via call control.

e The license obtained by CallViewer allows calls to be dropped.

Page 284

Technical Manual

14.156.28 CanCallDropAll
CanCaliDropAll

This is a variable that equals 1 if the Drop All (Release) call control feature is available at this moment, or equals 0 if the feature
is not currently available.
Typically, dropping all calls is available if the following conditions are met:

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports the handset being reset via call control.

e The license obtained by CallViewer allows the handset to be reset via call control.

Page 285

Mitel MiContact Center Office SDK 6.2

14.156.29 CanCallHoldEx
CanCallHoldEx

This is a variable that equals 1 if the Exclusive Hold call control feature is available at this moment, or equals 0 if the feature is

not currently available.
Typically, exclusively holding calls is available if the following conditions are met:

e There is an external outbound, or answered call at the extension associated with CallViewer .

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports exclusively holding calls via call control.

e The license obtained by CallViewer allows calls to be held exclusively.

Page 286

Technical Manual

14.156.30 CanCallHoldSys
CanCallHoldSys

This is a variable that equals 1 if the System Hold (park) call control feature is available at this moment, or equals 0 if the
feature is not currently available.
Typically, system-holding calls is available if the following conditions are met:

e There is an external outbound, or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports system holding calls via call control.

e The license obtained by CallViewer allows calls to be system held.

Page 287

Mitel MiContact Center Office SDK 6.2

14.156.31 CanCallRetrieve

CanCallRetrieve

This is a variable that equals 1 if the Retrieve From Hold call control feature is available at this moment, or equals 0 if the
feature is not currently available.
Typically, retrieving calls is available if the following conditions are met:

e There is an exclusively held call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports retrieving calls via call control.

e The license obtained by CallViewer allows calls to be retrieved.

Page 288

Technical Manual

14.156.32 CanCallTrans

CanCallTrans

This is a variable that equals 1 if the Enquiry Transfer call control feature is available at this moment, or equals 0 if the feature
is not currently available.

Typically, enquiry transfer is available if the following conditions are met:
e There is an external outbound, or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports enquiry transfer of calls via call control.

e The license obtained by CallViewer allows for enquiry transfer of calls.

Page 289

Mitel MiContact Center Office SDK 6.2

14.156.33 CanCallTransComp

CanCaliTransComp

This is a variable that equals 1 if the Complete Transfer call control feature is available at this moment, or equals 0 if the feature
is not currently available.
Typically, complete transfer is available if the following conditions are met:

e There is a previously set-up consultation call at the extension associated with CallViewer , which is external outbound,
or answered.

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports complete transfer via call control.

e The license obtained by CallViewer allows for transfer completion of calls.

Page 290

Technical Manual

14.156.34 CanCallTransRedir
CanCallTransRedir

This is a variable that equals 1 if the Transfer/Redirect call control feature is available at this moment, or equals 0 if the feature
is not currently available.
Typically,transfer/redirection of calls is available if the following conditions are met:

e There is an external or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports transferring / redirecting calls via call control.

e The license obtained by CallViewer allows calls to be transferred / redirected.

Page 291

Mitel MiContact Center Office SDK 6.2

14.156.35 ConfPartyLimit
ConfPartyLimit

This is a variable that equals the maximum number of parties that are permitted in a call conference by the telephone system
that Contact Center Server is connected to.

The maximum number of parties specified includes the extension that instigated the conference, i.e., the extension associated
with CallViewer , therefore the maximum number of calls that can be included in the conference is one less than the number

specified.

Page 292

Technical Manual

14.156.36 ClientActive
ClientActive

This is a variable that equals 1 if CallViewer is connected to the Contact Center Server , or 0 if it is not connected.

Page 293

Mitel MiContact Center Office SDK 6.2

14.156.37 ClientName

ClientName

This variable provides a string value consisting of the text “EXT-" followed by the extension that CallViewer is associated with.

It is provided for backward compatibility with earlier versions of CallViewer , which used this value as the network name for the
running instance of CallViewer .

Page 294

Technical Manual

14.156.38 ClientNameNum

ClientNameNum

This variable provides a string value depicting the extension that CallViewer is associated with. The variable is provided for
backward compatibility to previous versions of CallViewer .

Page 295

Mitel MiContact Center Office SDK 6.2

14.156.39 Clipboard
Clipboard

This variable provides a string value representing the text in the Windows clipboard. If there is no text in the clipboard, or the
object in the clipboard cannot be rendered as text, then a zero length string is returned.

You can use the ClipboardSetText command to set the contents of the clipboard.

Page 296

Technical Manual

14.156.40 Col1
Col1

This variable equals the line or extension number for the current call in the call list.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 297

Mitel MiContact Center Office SDK 6.2

14.156.41 Col2
Col2

This variable contains call information that changes dependent on the type of the current call in . For external calls, this will
display the DNIS string associated with the that the call came in on; for external non- calls it will display the description of the
trunk line that the call is active on, otherwise for internal calls it will contain “[Internal].”

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 298

Technical Manual

14.156.42 Col3
Col3

This variable equals information on Field 2 from the Telephone Import for the current call. Field 2 usually contains the company
or caller name of the identified contact. If the caller could not be identified, this field will contain “[New Contact].”

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 299

Mitel MiContact Center Office SDK 6.2

14.156.43 Col4
Col4

This variable equals information on Field 3 from the Telephone Import for the current call. The contents of this field are
dependent on the configuration of the import file on the . If the caller could not be identified, this field will contain an empty

string.
For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 300

Technical Manual

14.156.44 Col5
Col5

This variable equals information on Field 4 from the Telephone Import for the current call. The contents of this field are
dependent on the configuration of the import file on the . If the caller could not be identified, this field will contain an empty

string.
For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 301

Mitel MiContact Center Office SDK 6.2

14.156.45 Col6
Col6

This variable equals information on Field 5 from the Telephone Import for the current call. The contents of this field are
dependent on the configuration of the import file on the . If the caller could not be identified, this field will contain an empty

string.
For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 302

Technical Manual

14.156.46 Col7
Col7

This variable equals information on Field 6 from the Telephone Import for the current call. The contents of this field are
dependent on the configuration of the import file on the , but it is usually recommended that this contains the primary key for the
related record in the company database. If the caller could not be identified, this field will contain an empty string.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 303

Mitel MiContact Center Office SDK 6.2

14.156.47 CTIServerName

CTIServerName

This variable equals the network name of the Contact Center Server that CallViewer is connected to.

Page 304

14.156.48 Data1
Data1

Technical Manual

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such
variables, which can each store data independently. The contents of this variable are reset when execution of a user action

ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed
by a rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to

fire.

Rule Firing Event

[Data1] Contents

Call

The trunk line number that the call was active on.

ACD Agent Status Changed

A number between 0 and 8 depicting the status that the ACD agent changed to,
as follows:

0 — Logged Out

1 - Logged In
2 — Free
3 — Busy (Call)

4 — Busy (E-mail)
5 — Wrapup (Call)
6 — Busy N/A (DND)
7 — Wrapup (E-mail)
8 — Free (E-mail)

ACD Agent Help

Account Code Entered

The account code entered

Digits To Voice Mail

Forward / Divert Status
Changed

A number between 0 and 4 representing the forward / divert state being
changed to, as follows:

0 — None

1 — Immediate

2 — No Answer

3 — On Busy

4 — No Answer / On Busy

Do Not Disturb Status
Changed

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will

be lost.

Page 305

Mitel MiContact Center Office SDK 6.2

14.156.49 Data10
Data10

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data10] Contents
Call Contains field 6 from the matched record in the Telephone Import database.
ACD Agent Status Empty.

Changed

ACD Agent Help Empty.

Account Code Entered Empty.

Digits To Voice Mail Empty.

Forward / Divert Status Empty.

Changed

Do Not Disturb Status Empty.

Changed

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 306

Technical Manual

14.156.50 Data11
Data11

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data11] Contents
Call Empty.
ACD Agent Status Changed Empty.
ACD Agent Help Empty.
Account Code Entered Empty.
Digits To Voice Mail Empty.
Forward / Divert Status Changed Empty.
Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 307

Mitel MiContact Center Office SDK 6.2

14.156.51 Data2
Data2

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event

[Data2] Contents

Call

A string containing one of the following values:

e The DNIS description for inbound external calls.

e The trunk line description for external non- calls.

e “Internal” for internal calls.

ACD Agent Status Changed

The ACD agent ID whose status has changed.

ACD Agent Help

Account Code Entered

The trunk line of the external call that the account code was entered for.

Digits To Voice Mail

Empty.

Forward / Divert Status
Changed

The extension device or group being diverted to.

Do Not Disturb Status Changed

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 308

Technical Manual

14.156.52 Data3
Data3

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such
variables, which can each store data independently. The contents of this variable are reset when execution of a user action
ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed
by a rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to
fire.

Rule Firing Event [Data3] Contents

Call The received or digits for the call. If no was received for an inbound external call,
this string contains “[No]".

ACD Agent Status
Changed

ACD Agent Help

Account Code Entered Empty.
Digits To Voice Mail Empty.
Forward / Divert Status Empty.
Changed

Do Not Disturb Status
Changed

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will
be lost.

Page 309

Mitel MiContact Center Office SDK 6.2

14.156.53 Data4
Data4

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data4] Contents

Call The digits for an inbound call, or an empty string for non- calls.

ACD Agent Status Changed

ACD Agent Help Empty.
Account Code Entered Empty.
Digits To Voice Mail Empty.
Forward / Divert Status Changed Empty.
Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 310

Technical Manual

14.156.54 Datab
Datab

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data5] Contents

Call The unique serial number for the call. The serial number is an internally
generated string that the assigns to each external call.

ACD Agent Status Changed

ACD Agent Help Empty.
Account Code Entered Empty.
Digits To Voice Mail Empty.
Forward / Divert Status Changed Empty.
Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 311

Mitel MiContact Center Office SDK 6.2

14.156.55 Data6
Data6

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data6] Contents

Call This contains Field 2 from the matched record in the Telephone Import datat
ACD Agent Status Changed Empty.

ACD Agent Help Empty.

Account Code Entered Empty.

Digits To Voice Mail Empty.

Forward / Divert Status Changed Empty.

Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 312

Technical Manual

14.156.56 Data7
Data7

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data7] Contents

Call This contains Field 3 from the matched record in the Telephone Import datat
ACD Agent Status Changed Empty.

ACD Agent Help Empty.

Account Code Entered Empty.

Digits To Voice Mail Empty.

Forward / Divert Status Changed Empty.

Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 313

Mitel MiContact Center Office SDK 6.2

14.156.57 Data8
Data8

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data8] Contents

Call This contains Field 4 from the matched record in the Telephone Import database.
ACD Agent Status Changed Empty.

ACD Agent Help Empty.

Account Code Entered Empty.

Digits To Voice Mail Empty.

Forward / Divert Status Empty.

Changed

Do Not Disturb Status Empty.

Changed

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 314

Technical Manual

14.156.58 Data9
Data9

This variable stores temporary data assigned using such commands as DataSetStr or DataSetNum. There are 11 such variables,
which can each store data independently. The contents of this variable are reset when execution of a user action ends.

When a user action is executed by a rule firing, this variable will initially contain information specific to that rule. If not executed by a
rule, this does not apply. The table below indicates the contents of this variable based on the rule that caused the action to fire.

Rule Firing Event [Data9] Contents

Call This contains Field 5 from the matched record in the Telephone Import datat
ACD Agent Status Changed Empty.

ACD Agent Help Empty.

Account Code Entered Empty.

Digits To Voice Mail Empty.

Forward / Divert Status Changed Empty.

Do Not Disturb Status Changed Empty.

Note: If you subsequently call a command that sets the contents of this variable, the initial information pertaining to the rule will be lost.

Page 315

Mitel MiContact Center Office SDK 6.2

14.156.59 DDE1
DDE1

This variable represents the data returned by the last DDERequest command for DDE channel 1.

Page 316

Technical Manual

14.156.60 DDE2
DDE2

This variable represents the data returned by the last DDERequest command for DDE channel 2.

Page 317

Mitel MiContact Center Office SDK 6.2

14.156.61 DDE3
DDE3

This variable represents the data returned by the last DDERequest command for DDE channel 3.

Page 318

Technical Manual

14.156.62 DDE4
DDE4

This variable represents the data returned by the last DDERequest command for DDE channel 4.

Page 319

Mitel MiContact Center Office SDK 6.2

14.156.63 DDES
DDES

This variable represents the data returned by the last DDERequest command for DDE channel 5.

Page 320

Technical Manual

14.156.64 DDEG6
DDEG6

This variable represents the data returned by the last DDERequest command for DDE channel 6.

Page 321

Mitel MiContact Center Office SDK 6.2

14.156.65 DDIDigits
DDIDigits

This variable equals the digits for the current call. If the call is not a call, the variable will contain an empty string.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

You can select a particular call in the call list using the CallSelect command.

Page 322

Technical Manual

14.156.66 DevFirstRung
DevFirstRung

This variable equals the extension or group device that was rung first by the current call. For an inbound call this will be the first
device that the call alerted. For an outbound external call on a trunk line, this variable will contain the trunk line that the
outbound call is connected to. For an outbound internal call, it will contain the extension device of the party that the call was

made from.

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list.

This variable will never return a device that is not entered into ’s Extension or Groups window.

You can select a particular call in the call list using the CallSelect command.

Page 323

Mitel MiContact Center Office SDK 6.2

14.156.67 DialCombo
DialCombo

This variable equals the current value that is entered in the Dial Area of the CallViewer . This value is either the telephone
number that the user last entered to dial, or the telephone number of the last call active at the extension.

Page 324

Technical Manual

14.156.68 DiallLast
DialLast

This variable equals the first item in the CallViewer Dial List. The Dial List contains the last 20 telephone numbers that called
this extension or were called by it. The first item in the Dial List is therefore the telephone number of the last person contacted.

Page 325

Mitel MiContact Center Office SDK 6.2

14.156.69 DialPrefix

DialPrefix

This variable represents the dial prefix used when making outbound calls, as stored on the MiCC Office Server . If CallViewer is
using local dial rules, this variable will still return the MiContact Center Office Server configured dial prefix.

This string will be blank if CallViewer is not connected to MiContact Center Office Server .

Page 326

Technical Manual

14.156.70 Digits
Digits

This variable contains the digits or received for the current call in the call list. If was not received for an inbound external call,
this variable contains “[No]".

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, then the current call is the selected call in the call list. You can select a particular call in the call list
using the CallSelect command.

This variable can be used to perform screen popping of an external application, whereby the caller's details are displayed in the
company database when a call is made or received.

However, performing a search by telephone number in a database can be inexact. This is because different users will enter
telephone numbers in different formats, e.g. “”, while this variable contains an unformatted telephone number, e.g., “.”

An alternative method of screen popping, which is more reliable, is to use the 6-field Telephone Import file with to import known
contact information from the company database on a regular basis. Four of these six fields can contain custom information,
which is made available in the [Col4], [Col5], [Col6], and [Col7] variables. For example, if [Col7] contained the primary key for
the associated record in the company database, locating the correct record when a call is made or received could be achieved
very quickly in a screen popping macro.

Note: If an e-mail has been routed to , you should use the [EmailFromAddr] variable for information on where it came from,
because [Digits] applies only to call-based media.

Page 327

Mitel MiContact Center Office SDK 6.2

14.156.71 DNIS
DNIS

This variable displays call information that changes depending on the type of the current call.

For inbound external calls it will contain the DNIS description associated with the number by the distant end.
For external non- calls it will contain the description of the trunk line that the call is on.

For internal calls it will contain “[Internal].”

For an action that is executed because a rule fired, the current call is the call in the call list that caused the rule to fire. If a rule
did not execute the action, the current call is the selected call in the call list. You can select a particular call in the call list using
the CallSelect command.

Page 328

Technical Manual

14.156.72 EmailFromAddr
EmailFromAddr

This variable contains the e-mail address of the original sender of an e-mail that has been routed to the agent logged in to the
extension associated with this . If the agent has not been routed an e-mail, this variable is a blank string.

This variable can be used to perform screen popping of an external application, whereby the contact’s details are displayed in
the company database when an e-mail is received. This would be achieved by searching the company database for records
matching the given e-mail address.

A more reliable method however, is to use the 6-field Telephone Import file with to import known contact information from the
company database on a regular basis. Four of these six fields can contain custom information, which is made available in the
[Col4], [Col5], [Col6], and [Col7] variables. For example, if [Col7] contained the primary key for the associated record in the
company database, locating the correct record when an e-mail is received could be achieved very quickly in a screen popping
macro.

Page 329

Mitel MiContact Center Office SDK 6.2

14.156.73 EmailFromName

EmailFromName

This variable contains the description assigned against the e-mail address of the original sender of an e-mail that has been
routed to the agent logged in to the extension associated with this CallViewer . The e-mail address description is often defined
by the original sender of the e-mail, or by their local e-mail server. If the agent has not been routed an e-mail, this variable is a

blank string.

Page 330

Technical Manual

14.156.74 EmailGrpQ
EmailGrpQ

This variable contains the device number of the hunt group that an e-mail arrived was routed from. This only applies for e-mails
routed to the agent that is logged in at the extension that CallViewer is associated with. When such an e-mail is routed, the
hunt group device corresponds to the media blending queue that the e-mail message arrived via. This is defined within the
Group configuration of Contact Center Server . If the agent has not been routed an e-mail, this variable is a blank string.

Page 331

Mitel MiContact Center Office SDK 6.2

14.156.75 EmailProcessing

EmailProcessing

This variable returns 1 if the extension associated with is processing an e-mail message routed by , otherwise it returns 0.

This variable is useful when writing user actions to perform screen popping using the or e-mail address that may need to deal
with calls and e-mails being received at the same time. This variable can be used to determine whether to perform the screen

pop using the / digits, or the e-mail address of the message originator.

If you your screen popping action uses one of the [Colx] variables instead, along with the Telephone Import database, the
[EmailProcessing] variable will be of use only if trying to decide if other e-mail related variables are valid or not.

Page 332

Technical Manual

14.156.76 EmailSize

EmailSize
This variable returns the size in bytes of the e-mail message that has been routed to the agent logged in at the extension

associated with CallViewer . The size includes any message headers or attachments in the message as well. If the agent has
not been routed an e-mail, this variable will return 0.

Page 333

Mitel MiContact Center Office SDK 6.2

14.156.77 EmailSubjectText
EmailSubjectText

This variable returns the subject line of the e-mail message that has been routed to the agent logged in at the extension
associated with CallViewer . The subject line is exactly the same as the subject line in the e-mail that is available in the agent’s
e-mail client. If the agent has not been routed an e-mail, this variable returns an empty string.

Page 334

Technical Manual

14.156.78 EmailTag
EmailTag

This variable returns the tag code of the e-mail message that has been routed to the agent logged in at the extension
associated with CallViewer . The e-mail tag code is an internal reference string assigned by Contact Center Server to the e-mail
message. It is unique in real-time for all active e-mail messages being queued by any instance of Intelligent Router . If the
agent has not been routed an e-mail, this variable returns an empty string.

Page 335

Mitel MiContact Center Office SDK 6.2

14.156.79 EmailTagOrig
EmailTagOrig

This variable returns the original tag number of the e-mail message that has been routed to the agent logged in at the extension
associated with CallViewer . The original e-mail tag number is an internal reference of the e-mail messages assigned by
Intelligent Router r instance that downloaded the original message.

The original tag is also incorporated into the subject text of the routed e-mail, and so can be viewed in the e-mail client that
receives the routed messages. When incorporating the tag into the subject text, it is surrounded between “#[” and “I#” as well
as being formatted in hexadecimal (base 16), and padded to 8 characters, so a tag of 19 would appear as “#[{00000013]#".

Page 336

Technical Manual

14.156.80 EmailToAddr
EmailToAddr

This variable returns the e-mail address of the mailbox that the external e-mail was sent to, for e-mails that have been routed to
the agent logged in at the extension associated with CallViewer . This e-mail address equates to the address associated with a
media blending queue. If the agent has not been routed an e-mail, this variable returns an empty string.

Page 337

Mitel MiContact Center Office SDK 6.2

14.156.81 EmailToName

EmailToName

This variable contains the description assigned against the e-mail address of the mailbox that the external e-mail was sent to.
This only applies to those e-mails that have been routed to the agent logged in to the extension associated with this CallViewer
. The e-mail address description is often defined by the original sender of the e-mail, or by their local e-mail server. If the agent
has not been routed an e-mail, this variable is a blank string.

Page 338

Technical Manual

14.156.82 EOF1
EOF1

This variable returns a non-zero value if the current file position related to file handle 1 is at the end of the file, e.g. having read
every line in the file. If the return value is zero, the current file position is not at the end of the file.

Page 339

Mitel MiContact Center Office SDK 6.2

14.156.83 EOF2
EOF2

This variable returns a non-zero value if the current file position related to file handle 2 is at the end of the file, e.g. having read
every line in the file. If the return value is zero, the current file position is not at the end of the file.

Page 340

Technical Manual

14.156.84 EOF3
EOF3

This variable returns a non-zero value if the current file position related to file handle 3 is at the end of the file, e.g. having read
every line in the file. If the return value is zero, the current file position is not at the end of the file.

Page 341

Mitel MiContact Center Office SDK 6.2

14.156.85 EOF4
EOF4

This variable returns a non-zero value if the current file position related to file handle 4 is at the end of the file, e.g. having read
every line in the file. If the return value is zero, the current file position is not at the end of the file.

Page 342

Technical Manual

14.156.86 EOF5
EOF5

This variable returns a non-zero value if the current file position related to file handle 5 is at the end of the file, e.g. having read
every line in the file. If the return value is zero, the current file position is not at the end of the file.

Page 343

Mitel MiContact Center Office SDK 6.2

14.156.87 ErrorDesc

ErrorDesc

This variable returns descriptive text for the error returned by the last DDExxx, Filexxx, or ODBCxxx command performed. This
only applies if the SetErrorsFatal command has been used to stop errors from terminating execution of the macro.

Page 344

Technical Manual

14.156.88 ErrorNum
ErrorNum

This variable returns the error number for the error returned by the last DDExxx, Filexxx, or ODBCxxx command performed.
This only applies if the SetErrorsFatal command has been used to stop errors from terminating execution of the macro.

Page 345

Mitel MiContact Center Office SDK 6.2

14.156.89 INIFile
INIFile

This variable returns a string that contains the name of the initialization (INI) file where some settings are stored. This variable
is provided for backward compatibility. In version 4 the vast majority of settings are stored in the registry, rather than in an INI

file.

Page 346

Technical Manual

14.156.90 Line

Line
This variable returns the line or extension number for the current call. For an action that is executed because a rule fired, the

current call is the call in the call list that caused the rule to fire. If a rule did not execute the action, then the current call is the
selected call in the call list. You can select a particular call in the call list using the CallSelect command.

Page 347

Mitel MiContact Center Office SDK 6.2

14.156.91 LocalExtension

LocalExtension

This variable returns the extension that CallViewer is associated with.

Page 348

Technical Manual

14.156.92 LongDate
LongDate

This variable returns a string representing the current date in “long” format, as defined in the Regional settings of Windows
Control Panel. A long date format would be similar to “ April 22, 2006 .

Page 349

Mitel MiContact Center Office SDK 6.2

14.156.93 LongDistPref
LongDistPref

This variable represents the long distance telephone number prefix used when making long distance calls, as stored on the
MiContact Center Office Server . If CallViewer is using local dial rules, this variable will still return the MiCC Office Server

configured long distance telephone number prefix.
This string will be blank if is not connected to MiCC Office Server .

Page 350

Technical Manual

14.156.94 LongTime

LongTime

This variable returns the current time in long format, as defined in the Regional settings of Windows Control Panel.

Page 351

Mitel MiContact Center Office SDK 6.2

14.156.95 Macros

Macros

This variable returns the number of macros that are concurrently running. This is provided for backwards compatibility with
earlier versions of where there was a limit on the number of macros that could run concurrently. In version 4, all user actions
run independently of each other, and several can run at once. In version 4, this variable always returns 1.

Page 352

Technical Manual

14.156.96 MacrosNested

MacrosNested

This variable returns the nested level of this user action, which can be used to decide if the user action has been executed by
another. This is provided for backwards compatibility with earlier versions of CallViewer . In version 4 all user actions run
independently of each other, and so this variable always returns 0.

Page 353

Mitel MiContact Center Office SDK 6.2

14.156.97 MediumDate

MediumDate

This variable returns the current date in “medium” date format. The medium date format is the same as the short date format,
as defined by Regional settings in Windows Control Panel, except that the month is spelled out in abbreviated form rather than

numeric form.

Page 354

Technical Manual

14.156.98 MediumTime

MediumTime

This variable returns the current time in 12-hour format using hours, minutes, and an AM/PM designator.

Page 355

Mitel MiContact Center Office SDK 6.2

14.156.99 ODBCPos1
ODBCPos1

This variable returns the current record position for the open ODBC connection on ODBC channel 1. Since the ODBC driver
may not be able to give reliable information on physical record position, this variable will only ever return one of the following

values:
-1 At the end of the records (i.e. no more records left to process)
0 At the first record.
1 In the middle, i.e. not at the first or last record.

Note: You should use the GotolfNoRecords command to check to see if any records have been returned, rather than using this

macro variable.

Page 356

Technical Manual

14.156.100 ODBCPos2
ODBCPos2

This variable returns the current record position for the open ODBC connection on ODBC channel 2. Since the ODBC driver
may not be able to give reliable information on physical record position, this variable will only ever return one of the following

values:

-1 At the end of the records (i.e. no more records left to process)
0 At the first record.
1 In the middle, i.e. not at the first or last record.

Note: You should use the GotolfNoRecords command to check to see if any records have been returned, rather than using this
macro variable.

Page 357

Mitel MiContact Center Office SDK 6.2

14.156.101 ODBCPos3
ODBCPos3

This variable returns the current record position for the open ODBC connection on ODBC channel 3. Since the ODBC driver
may not be able to give reliable information on physical record position, this variable will only ever return one of the following

values:
-1 At the end of the records (i.e. no more records left to process)
0 At the first record.
1 In the middle, i.e. not at the first or last record.

Note: You should use the GotolfNoRecords command to check to see if any records have been returned, rather than using this

macro variable.

Page 358

Technical Manual

14.156.102 RND
RND

This variable generates a random number between 0 and 1, e.g., 0.45125. The number is accurate to 5 decimal places.

Page 359

Mitel MiContact Center Office SDK 6.2

14.156.103 ShortDate
ShortDate

This variable returns the current date in “short” date format, as defined in the Regional settings of Windows Control Panel.

Page 360

Technical Manual

14.156.104 ShortTime
ShortTime

This variable returns the current time in “short” time format, as defined in the Regional settings of Windows Control Panel.

Page 361

Mitel MiContact Center Office SDK 6.2

14.156.105 TelNoFormatCount

TelNoFormatCount

This variable returns the number of telephone number formats that are recognized by the FormatTelephoneNumber command.
If you use the FormatTelephoneNumber command, and request a format beyond the value of this variable, then the command

will return an empty string.

Page 362

Technical Manual

14.156.106 Titlebar
Titlebar

This variable returns the titlebar text of the application window that is currently active. If there is no active window, this variable
returns a blank string.

Page 363

Mitel MiContact Center Office SDK 6.2

14.156.107 WinDir
WinDir

This variable returns a string containing the full path to the current Windows folder on this computer, e.g., C: \Windows. It is
recommended that you use this variable rather than hard-coding the Windows folder directly, because the location of the folder

could change between different computers or operating systems.

Page 364

14.156.108 WinOS

WinOS

This variable returns a string that identifies the operating system that CallViewer is currently running on. It can be one of the following

values:

Technical Manual

Value Operating System

WIN95 Windows 95

WIN98 Windows 98

WINME Windows ME

WINNT Windows NT

WIN2000 Windows 2000

WINXP Windows XP up to and including Service Pack 1
WINXP_SP2 Windows XP Service Pack 2 or later

WINUNK Unknown operating system

Page 365

Mitel MiContact Center Office SDK 6.2

14.156.109 WinSysDir
WinSysDir

This variable returns a string containing the full path to the current Windows System folder on this computer, e.g.,

C:\Windows\System32. It is recommended that you use this variable rather than hard-coding the System folder directly,
since the location of the folder could change between different computers or operating systems.

Page 366

Technical Manual

15 Methods

The section documents the methods that are provided via Callview Link Control. Examples in the section assume VBScript as a
language, and that an instance of the control has been assigned to the axCallview variable.

Page 367

Mitel MiContact Center Office SDK 6.2

15.1 AppActivateLike
AppActivateLike

This method activates a particular window. An activated window has the input focus, receiving all keystrokes, as well as being
at the front of the desktop.

Syntax:

AppActivateLike WindowTitle

Parameter:

WindowrTitle: The left part of the title of the application window to activate.

The name that appears in the titlebar need not be fully specified. For instance, “Calculat” would still activate an open application
with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator’ and “calculator” appear identical.

Example:

' Activate the window with a caption of “Untitled - Notepad”
axCallview.AppActivateLike “Untitled - Notepad”
' Activate a window whose caption starts with “Call”

axCallview.AppActivateLike “Call”

Page 368

Technical Manual

15.2 AppActivateLikeChild
AppActivateLikeChild

This method activates a particular child window within a particular application window. An activated window has the input focus,
receiving all keystrokes, as well as being at the front of the desktop.

Syntax:

AppActivateLikeChild WindowTitle, ChildWindow

Parameters:

e WindowTitle: The left part of the title of the application window to activate.
The name that appears in the titlebar need not be fully specified. For instance, “Calculat” would still activate an open
application with titlebar text “Calculator”. The comparison is also not case sensitive; i.e., “Calculator” and “calculator”
appear identical.

e ChildWindow: The leftmost part of the title of the child window to activate.

The name that appears in the titlebar need not be fully specified, and is not case sensitive.
Example:

' Activate the child window “Documentl” in Word

axCallview.AppActivateLikeChild “Microsoft Word”, “Documentl”

Page 369

Mitel MiContact Center Office SDK 6.2

15.3 CallAnswer

CallAnswer

This method attempts to answer a call ringing on a given extension.

Syntax:

CallAnswer Extension, Callltem

Parameters:

e Extension: The extension device to answer the call at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

e Callltem: The index of the call to answer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically answer the first alerting call that it finds against the given
extension. In fact, if the call specified in this argument is not alerting the given extension, then the next alerting call is
answered instead.

Example:

' Answer the current call at this extension
axCallview.CallAnswer “, 0
' Answer second call at extension 200

axCallview.CallAnswer “2007, 2

Page 370

Technical Manual

15.4 CallConference

CallConference

This method allows you to conference calls at the given device
The following rules apply to this method:

e If all the calls at the specified extension are not held, then the method places the current call on hold and prompts you
to enter in the extension or telephone number of another party.

e |If there are any held calls at the specified extension then the method joins all the calls together into a conference.

e |[f the extension device is in a state that cannot facilitate the conferencing of calls (or adding a new conference party),
then an error occurs.

Syntax:
CallConference Extension

Parameter:

Extension: The extension device to conference calls at. If a blank string is specified, then the extension assigned to the
running instance of will be used.

Example:

' Conference the call at the current extension

74

axCallview.CallConference

Page 371

Mitel MiContact Center Office SDK 6.2

15.5 CallDialDigits

CallDialDigits

This method dials digits over the active conversation on a given extension.

Syntax:

CallDialDigits Extension, Callltem, Digits

Parameters:

e Extension: The extension device to dial the digits at. If a blank string is specified, then the extension assigned to the running
instance of will be used.

e Callltem: The index of the call to dial digits on. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically dial digits on the first answered call that it finds against the given extension.

In fact, if the call specified is not in the answered state at the given extension, the next answered call is used instead.

e Digits: The digits to dial on the specified call. Some characters have a special meaning :

Character Description
! This character can precede a feature code. By dialing features codes you can simulate an extens
feature being “accessed” on a station device. You can usually do this even when the [CanCallDi
] macro variable returns a value that indicates that dialing digits on line is unavailable. See your
extension manual for a list of default feature code values.
P Pause
F Hookflash

Page 372

15.6 CallDrop
CallDrop

This method releases a particular call on a given extension.

Syntax:

CallDrop Extension, Callltem

Parameters:

Technical Manual

e Extension: The extension device to end the call at. If a blank string is specified, then the extension assigned to the

running instance of will be used.

e Callltem: The index of the call to end. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically drop the first call at the given extension that is outbound external or

answered.

In fact, if the call specified at the given extension is not an outbound external call, or answered, the first such call at the

extension is used instead.

Example:

' Drop the current call at this extension

axCallview.CallDrop “”, O
|l

Drop the second call at extension 200

axCallview.CallDrop “200”, 2

Page 373

Mitel MiContact Center Office SDK 6.2

15.7 CallDropAll
CallDropAll

This method releases all calls on a given extension, and then resets the extension.

Syntax:

CallDropAll Extension

Parameter:

Extension: The extension device to end all calls at. If a blank string is specified, the extension assigned to the running instance
of will be used.

Example:

' Drop all calls at the current extension
axCallview.CallDropAll “”
' Drop all calls at extension 200

axCallview.CallDropAll “200”

Page 374

Technical Manual

15.8 CallHoldExclusive

CallHoldExclusive

This method places an external outbound or answered call on exclusive hold at the given extension.

Syntax:

CallHoldExclusive Extension, Callltem

Parameters:

e Extension: The extension device to exclusively hold the call at. If a blank string is specified, then the extension
assigned to the running instance of will be used.

e Callltem: The index of the call to hold. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically hold the first call at the given extension that is outbound external or
answered.

In fact, if the call specified at the given extension is not an outbound external call, or answered, the next call at the
extension is used instead.

Example:

' Hold the current call at this extension
axCallview.CallHoldExclusive Y7, 0

' Hold the third call at extension 230
axCallview.CallHoldExclusive “2307, 3

Page 375

Mitel MiContact Center Office SDK 6.2

15.9 CallHoldSystem
CallHoldSystem

This method places an external outbound or answered call on system hold, sometimes known as park, at the given extension.
Syntax:

CallHoldSystem Extension, Callltem

Parameters:

e Extension: The extension device to system hold (park) the call at. If a blank string is specified, then the extension
assigned to the running instance of will be used.

e Callltem: The index of the call to hold. Calls in the list are identified as 1 for the first call in the call list, 2 for the second
call etc. A value of 0 will instruct to automatically hold the first call at the given extension that is outbound external or
answered.

In fact, if the call specified at the given extension is not an outbound external call, or answered, the next call at the
extension is used instead.

Example:

' Place the current call at this extension on system hold

axCallview.CallHoldSystem “”, O
' Hold the third call at extension 230
axCallview.CallHoldSystem “230”, 3

Page 376

Technical Manual

15.10 CallMake
CallMake

This method attempts to make an outbound call from one extension to a given internal or external number.
Syntax:

CallMake Extension, DialString, AutoPrefix

Parameters:

e Extension: The extension device to make a new call at. If a blank string is specified, the extension assigned to the
running instance of will be used.

e DialString: The telephone number to dial.

e AutoPrefix: This is a numerical argument that when set to “0” dials the digits exactly as entered in the “DialString”
parameter.

When this value is set to “1”, the number to be dialed is affected by the dial rules configured within CallViewer . At a
minimum this means that the outbound dial prefix will be included in the digits sent to the telephone system.

Example:

' Make a call from the current extension to Mitel
axCallview.CallMake “7”, “ 14809619000 ”, True

' Make a call from extension 213 to extension 200
axCallview.CallMake “213”, “200”, True

' Make a call to America without prefixing the dial prefix

axCallview.CallMake “”, “91410013104491481"”, False

Page 377

Mitel MiContact Center Office SDK 6.2

15.11 CallMonitor

CallMonitor

This method monitors an active call on an extension. The method returns True if successful, or False otherwise.

Syntax:

CallMonitor Extension, ExtTarget, MonitorType

Parameters:

e Extension: The extension device of the supervisor who will monitor the target call. If this is a blank string, the target call will be
monitored at the extension currently assigned to CallViewer .

e ExtTarget: The extension where the external trunk line call is active. This call at this device will be monitored using the monitor
type specified in the “MonitorType” parameter.

e MonitorType: This numerical value defines the type of monitoring to perform, as follows:

Value Description

0 Silent Monitor: This allows an agent group supervisor to listen in on an agent's conversation from the
supervisor extension. No indication is made to the agent or extension that is being monitored unless
specified in the telephone system's programming.

1 Not used.

: The target agent is informed of the intrusion by a beeping noise, and can refuse to accept the intrusic
the agent accepts, the supervisor extension will intrude in on the conversation, as if they had been
conferenced in.

2 Not used.

: The target agent will be briefly informed of the intrusion by a beep, before the supervisor extension
intrudes on the conversation, as if they had been conferenced in.

Example:

' Monitor a call at extension 216 in silent monitor mode
axCallview.CallMonitor “”, “216”, O
' Monitor extension 213 at extension 278 in silent monitor mode

axCallview.CallMonitor "278", "213", 0

Page 378

Technical Manual

15.12 CallPage
CallPage

This method pages a group or extension from a given extension.

Syntax:

CallPage Extension, PageGroup

Parameters:

e Extension: The extension device to perform the page from. If this is a blank string, then the page will be performed at
the extension currently assigned to CallViewer .

e PageGroup: The group to be paged.
Example:

' Page group 10 from the current extension

axCallview.CallPage “”, “10”

Page 379

Mitel MiContact Center Office SDK 6.2

15.13 CallPickup
CallPickup

This method picks up a call alerting at another extension, on a given extension.
Syntax:
CallPickup Extension, AlertingDevice

Parameters:

e Extension: The extension device to perform to pickup the call at. If this is a blank string, the call will be picked up at the
extension currently assigned to CallViewer .

e AlertingDevice: The extension that has a queued or alerting call that is to be picked up at the “Extension” device.

Example:

' Pick up extension 213 at this extension

axCallview.CallPickup “"”, “213”
' Pick up group 400 at extension 299
axCallview.CallPickup “299”, “400”

Page 380

Technical Manual

15.14 CallRetrieve

CallRetrieve

This method retrieves a call from exclusive hold, at a given extension.

Syntax:

CallRetrieve Extension, Callltem

Parameters:

e Extension: The extension device that has the held call to be retrieved. If this is a blank string, then the call will be
recorded at the extension currently assigned to CallViewer .

e Callltem: The index of the call to retrieve. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct CallViewer to automatically retrieve the first exclusively held call at the given
extension.

In fact, if the call specified at the given extension is not an exclusively held call, then an error is generated.

Example:

' Retrieve the currently selected call on this extension
axCallview.CallRetrieve V7, 0
' Retrieve the first call at extension “204”

axCallview.CallRetrieve “204”7, 1

Page 381

Mitel MiContact Center Office SDK 6.2

15.15 CallSelect
CallSelect

This method selects a particular call in the call list associated with the CallViewer .
Syntax:
CallSelect Callltem

Parameter:

Callltem: The index of the call to select, where 1 represents the first call in the list, 2 represents the second call, and so on.
Specifying a call item of 0 will remove any selection from the call list.

Example:

' Select the fourth call in the call list
axCallview.CallSelect 4

Page 382

Technical Manual

15.16 CallTransfer

CallTransfer

This method transfers the current call to a different number. It automatically places the currently answered call on exclusive
hold, and then makes an announcement call to the new number.

Syntax:

CallTransfer Extension, DialString, AutoPrefix

Parameters:

e Extension: The extension to perform the transfer at. If the extension is a blank string, the device currently associated
with is used instead.

e DialString: The telephone number to make the announcement call to. If this is a blank string then the user will be
prompted for the number to transfer to.

e AutoPrefix: This is a numerical argument that when set to “0” dials the digits exactly as entered in the “DialString”
parameter.

When this value is set to “1”, the number to be dialed is affected by the dial rules configured within CallViewer . At a minimum
this means that the outbound dial prefix will be included in the digits sent to the telephone system (if the telephone number
appears to be external).

Example:

' Transfer a call from the current extension to “200”
axCallview.CallTransfer “”, “200”, True
' Transfer a call from extension 200 to extension 416

axCallview.CallTransfer “200”, “416”, False

Page 383

Mitel MiContact Center Office SDK 6.2

15.17 CallTransferComplete

CallTransferComplete

This command completes a call transfer at the given extension. For the command to be able to work there must already be the
call-to-transfer on exclusive hold at the specified extension. There must also be a previously set up consultation call that is in
the answered state. The command transfers the specified held call to the party at the distant end of the currently answered
consultation call.

Syntax:

CallTransferComplete Extension, Callltem

Parameters:

e Extension: The extension device that has the consultation call to be completed. If this is a blank string, then the
transfer will be completed at the extension currently assigned to CallViewer .

e Callltem: The index of the held call to transfer to the answered consultation call. Calls in the list are identified as 1 for
the first call in the call list, 2 for the second call etc. A value of 0 will instruct to automatically transfer the first held call at
the given extension.

Example:

' Complete a transfer of the currently selected call at the
' current extension

axCallview.CallTransferComplete “”, 0

Page 384

Technical Manual

15.18 CallTransRedir
CallTransRedir

This command performs a blind (direct) transfer of an answered or alerting call at the given device to another party. The
command prompts the user for the party to transfer the call to.

Syntax:
CallTransRedir Extension, Callltem

Parameters:

e Extension: The extension device that has the call to be blind transferred. If this is a blank string, then the transfer will
be performed at the extension currently assigned to CallViewer .

e Callltem: The index of the call to blind transfer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically transfer the first alerting, answered, or external outbound call
at the given extension.

Example:

' Blind transfer the current call on the current extension

axCallview.CallTransRedir “”, 0

Page 385

Mitel MiContact Center Office SDK 6.2

15.19 CallTransRedirDirect
CallTransRedirDirect

This command performs a blind (direct) transfer of an answered or alerting call at the given device to another party specified in
the command’s parameters.

If the given call is alerting, it will be redirected to the specified party. If the call is answered, then it will be blind transferred. The
call always alerts the party that it is transferred to immediately after the command is completed.
Syntax:

CallTransRedirDirect(Extension, Callltem, DialString)

Parameters:

e Extension: The extension device that has the call to be blind transferred. If this is a blank string, then the transfer will
be performed at the extension currently assigned to CallViewer .

e Callltem: The index of the call to blind transfer. Calls in the list are identified as 1 for the first call in the call list, 2 for the
second call etc. A value of 0 will instruct to automatically transfer the first alerting, answered, or external outbound call
at the given extension.

e DialString: The number of the party to transfer the call to.

Example:

' Transfer a call from the current extension to extension 321

axCallview.callTransRedirDirect “”, 0, “321”

Page 386

Technical Manual

15.20 DoCommand

DoCommand

This method executes any Macro Language command, or sequence of commands.

Syntax:

DoCommand(Command)

Parameter:

Command: A string that contains the Macro Language command(s) to perform. If more than one command is specified then
each command be separated by a carriage return (ASCII character 10).

Example:

' Display a message box

VAN) ”

axCallview.DoCommand “MessageBox (”“My message”™“,16,”“My title

Page 387

Mitel MiContact Center Office SDK 6.2

15.21 GetDigitFormat
GetDigitFormat

This method returns the given continuous digit string as a telephone number. This is useful when searching a database for
telephone numbers where a variety of different telephone number formats are used by the user, e.g., “” or “.”

Syntax:

GetDigitFormat(Digits, Formatindex) As String

Parameters:

e Digits: The continuous string of digits to be converted into a specific format. Typically this would be taken from the
Digits property.

e Formatindex: This number represents the index of the format to use. Indices are between 1 and the number returned
by DigitFormatCount. Requesting an out of range index will return a blank string.

Example:

' Convert the digits in the Digits variable to the third format

szResult = axCallview.GetDigitFormat (axCallview.Digits, 3)

Notes:

The available number formats are stored in the “DialFormats” section of the file. The “FmtCount” setting indicates the number of
available formats. For each format there is a setting “FmtXXX’ where XXX is the 1-based index of the format. Each format
consists of hard coded text that will be output verbatim in the formatted string. The character “N” is used to represent the next
digit in the input string, and the character “S” represents the rest of the entire string, including terminating any subsequent
formatting.

For example, the format “+ (NNN) NS” would format “ " as “ .’

Page 388

15.22 GetSettingStr
GetSettingStr

Technical Manual

This method reads a text setting from the CVMACRO. INT settings file. The method returns the setting stored against the given
key in the requested section of the INI file, or returns the default value specified if no value could be found. The setting is

returned as a text-based value.
Syntax:
GetSettingStr(Section, Setting, Default) As String

Parameters:

e Section: The section of the file where the settings can be found. A section is denoted by having its name enclosed in

square brackets, e.g., “[Section Name]”
e Setting: The name of the setting to retrieve.

e Default: The default text to return if the given setting could not be found.

Example:

' Use the “ApplicationTitle” setting from the “General” section

' of the file in a message box

MsgBox “This is my test message”, 0, axCallview.GetSettingStr (“General”,

A //)

Notes:

The CVMACRO. INI file is broken down into sections and settings, e.g.,
[Section1]
Setting1=Value
Setting2=0Other Value

Page 389

“ApplicationTitle”,

Mitel MiContact Center Office SDK 6.2

15.23 GetSettingVal
GetSettingVal

This method reads a numeric setting from the CVMACRO . INT settings file. The method returns the setting stored against the
given key in the requested section of the INI file, or returns the default value specified if no value could be found. The setting is
returned as a numerical value.

Syntax:
GetSettingVal(Section, Setting, Default) As Long

Parameters:

e Section: The section of the file where the settings can be found. A section is denoted by having its name enclosed in
square brackets, e.g., “[Section Name]”

e Setting: The name of the setting to retrieve.

e Default: The default value to return if the given setting could not be found.

Example:

' Initialize a variable with the “MaxTime” setting in the
' "Timers” section of the file

IMaxTimeSetting = axCallview.GetSettingStr (“"Timers”, “MaxTime”, 30)

Notes:

The CVMACRO. INI file is broken down into sections and key entries, e.g.
[Section1]
Setting1=Value
Setting2=0Other Value

Page 390

Technical Manual

15.24 Initialise

Initialise

This method must be called to enable the telephony events of the CallViewer Link Control. If the call is successful, the method
returns True, and False if initialization failed. You only need call this method if you intend to process the events such as
CallAnswered, etc. If you just want to use the CallViewer Link Control to perform some call control commands, you do not
need to call this method.

Syntax:

Initialise

Note: This command uses British spelling and must be entered as shown here or it will produce a compiler error.

Parameters:

None.

Example:

If axCallview.Initialise then
axCallview.CallMake “”, ™ 1480 9619000 ”, True
axCallview.Uninitialise

End If

Page 391

Mitel MiContact Center Office SDK 6.2

15.25 IsWindowOpen
IsWindowOpen

This method detects whether a specified window is open or not. It returns True if the window is open and visible, or False
otherwise.

Syntax:

IsWindowOpen(WindowTitle) As Boolean

Parameter:

WindowtTitle: The title of the window to find. This text can contain a number of “*s” as wildcards, representing zero or more
characters. For example, “Calc*”, “*ulator”, and “*alcula*” would all match the “Calculator” title.

Example:

' Check if Microsoft Outlook is open

If axCallview.IsWindowOpen (“*Outlook”) then

' Check if Microsoft Word is open

If axCallview.IsWindowOpen (“*Microsoft Word*”) then

' Check if a window starting ‘Microsoft’ & ending ‘Data’ is open

If axCallview.IsWindowOpen (*Microsoft*Data”) then

Page 392

Technical Manual

15.26 MacroBtnRun

MacroBtnRun

This method executes one of the 12 button macros imported from CallViewer version 3. This command only exists for support
of existing version 3 macros, because it only executes macros that were created in version 3.x.

Syntax:
MacroBtnRun ButtonNumber

Parameter:

ButtonNumber: This numerical value depicts the button number from CallViewer version 3.x that should be executed. It is a
value between 1 and 12.

Example:

' Run button macro 10

axCallview.MacroBtnRun 10

Page 393

Mitel MiContact Center Office SDK 6.2

15.27 SendKeys
SendKeys

This method emulates sending a keystroke sequence to the currently active Windows-based application. Execution of the user action
does not continue until the keystrokes have been processed.

Syntax:

SendKeys Keystrokes

Parameter:

Keystrokes: This string represents the keystrokes that are to be sent to the currently active application.
Most keystrokes are represented by each individual character in the string, for example the string “apple” would emulate pressing the

] Lo G
i

a” key, then “p,” “p, and “e.
You can emulate a key being pressed with Control, Shift, and/or Alt being pressed at the same time, with one of the following modifiers:

Character Represents
Plus (+) Shift key
Percent (%) Alt key
Caret (1) Control key

If you needed to emulate Control-Alt-X, you provide the text “*%Xx”. If you want to use the modifiers across several keys, enclose the
keys in parentheses, e.g., “%(fa)” emulates Alt-F followed by Alt-A.

There are several keys that you cannot easily provide in the string, such as the Escape key, or the function keys. To emulate these
keystrokes, use one of the following keywords in curly braces, e.g,. “{ENTER}".

Keystroke Keyword
Backspace {BACKSPACE} or {BS} or {BKSP}
Break {BREAK}

Caps Lock {CAPSLOCK}
Clear {CLEAR}

Del {DELETE} or {DEL}
Down Arrow {DOWN}

End {END}

Enter {ENTER} or ~ (tilde)
Esc {ESCAPE} or {ESC}
Help {HELP}

Home {HOME}

Ins {INSERT}

Left Arrow {LEFT}

Num Lock {NUMLOCK}

Page Down {PGDN}

Page 394

Technical Manual

Page Up {PGUP}
Right Arrow {RIGHT}
Scroll Lock {SCROLLLOCK}
Tab {TAB}
Up Arrow {UP}

F1 {F1}

F2 {F2}

F3 {F3}

F4 {F4}

F5 {F5}

F6 {F6}

F7 F7}

F8 {F8}

F9 {F9}

F10 {F10}
F11 {F11}
F12 {F12}

If you need to emulate a key being pressed several times, then enclose the key or keyword in curly braces, followed by a space, and the
number of times to repeat the key, e.g., “{ENTER 5}” would press the ENTER key five times.

If you need to type one of the special modifiers (%, *, +, or ~), enclose them in curly braces too, e.g., “5% ” would press the 5 key
followed by Alt+Space, whereas “5{%}" would type “5%”.

Example:

' Exit Notepad using the File menu
axCallview.AppActivateLike “Untitled - Notepad”

axCallview.Sendkeys “$fx”

Page 395

Mitel MiContact Center Office SDK 6.2

15.28 SendKeysEx
SendKeysEx

This method emulates sending a keystroke sequence to the currently active application. Unlike the SendKeys method,

SendKeysEx can be used to emulate keystrokes in both Windows applications, as well as MS-DOS and console application
windows.

Syntax:

SendKeysEx Keystrokes, PauseTime

Parameters:

e KeyStrokes: This string represents the keystrokes that are to be sent to the currently active application. See the
SendKeys method for information on the format of this string.

e PauseTime: This numerical value defines the number of milliseconds to pause between each keystroke. The value can
be from 0 to 10000 (which is 10 seconds).
It is recommended that a value other than 0 be used for this setting. This command is emulating keystrokes at the
keyboard driver level, and while a human could not type 1000 keystrokes a second, SendKeysEx can! This can lead to

the keyboard buffer being filled, and then keystrokes are lost. A value somewhere between 10 and 50 often works well,
although experimentation with your chosen application is a good idea.

Example:

' Display help
axCallview.SendKeysEx “{F1}”, O

Page 396

Technical Manual

15.29 SetAccountCode
SetAccountCode

This method sets the account code for an external (trunk line) call at a given extension. The account code can either be written
directly into the call model (allowing for alphanumeric account codes to be used), or via the telephone system. The method
returns True if successful, or False otherwise.

Syntax:

SetAccountCode Extension, Callltem, AccountCode, UseCallControl

Parameters:

e Extension: The extension device to set the account code at. If a blank string is specified, the extension assigned to the
running instance of will be used.

e Callltem: The index of the call to set the account code on. Calls in the list are identified as 1 for the first call in the call
list, 2 for the second call etc. A value of 0 will instruct to automatically set the account code on the first external call at
the given extension.

In fact, if the call specified at the given extension is not an external call, the next call at the extension is used instead.
e AccountCode: The account code to set on the given call. If the “UseCallControl” parameter is 1, then this parameter
has a maximum length of 12 characters, otherwise it has a maximum length of 50 characters.
The account code in this parameter will overwrite any existing account code active on this call.
e UseCallControl: If this value is False then the account code bypasses the telephone system, and is processed only

internally within Contact Center Server . This allows for longer account codes, and support for the account code
functionality across all telephone systems.

If the value is True, the account code is sent to the telephone system, as if it had been entered on the user’s handset.
The account code is then limited to a length imposed by the telephone system.

Example:

' Set account code 999 on extension 214 via the telephone system
axCallview.SetAccountCode “214”7, 0, “999”, True
' Set account code “NEW CUSTOMER” on current extension

axCallview.SetAccountCode “”, 0, “NEW CUSTOMER”, False

Notes:

The format of an account code varies by telephone system. However, by setting the UseCallControl flag to False, you can
bypass the telephone system, and attach account codes to calls such that the account code can be alphanumeric, and up to 50
characters in length. This allows for greater flexibility when filtering with a product such as Reporter .

Page 397

Mitel MiContact Center Office SDK 6.2

15.30 SetACDAgentState
SetACDAgentState

This method changes the state of an ACD agent, allowing the calling application to log an agent on or off, enter wrap-up, and so on. The
method returns True if successful, or False otherwise.

Syntax:

SetACDAgentState(Extension, AgentID, AgentState, ACDGroup)

Parameters:

e Extension: The extension device to set the agent state at. If a blank string is specified, the extension assigned to the running
instance of will be used.

e AgentID: The ID that defines the agent whose state is to change.

e AgentState: This numerical value depicts the new agent state to place the given extension / agent in. It can be one of the

following values:

Value Description

0 The agent is logged out.

You can specify a specific hunt group to log out of in the “ACDGroup” parameter. If “ACDGroup” is blan
agent is logged out of all hunt groups.

1 Log the agent in.

In the “ACDGroup” parameter, you can specify a specific hunt group to log in to. If “ACDGroup” is blank
agent is logged in to all hunt groups of which they are a member.

2 Changes the specified agent’s state to “Free.”

3 Changes the specified agent’s state to “Busy (Call).”

Note: The “Busy (Call)” state is an automatic state generated when the corresponding agent is on a cal
this reason, this command would normally generate an error if requesting that an agent enter the “Busy
(Call)” state.

4 Changes the specified agent’s state to “Busy (E-mail).”

5 Changes the specified agent’s state to “Wrapup (Call).” This is performed in such a way that any teleph
system-based wrap-up timer is ignored, and as such the agent will remain in the wrap-up state indefinitt
or at least until they enter the free state.

6 Changes the specified agent’s state to ” Do-Not-Disturb.”

7 Changes the specified agent's state to “Free (E-mail).”

8 Changes the specified agent's state to “Wrapup (E-mail).”

e ACDGroup: The ACD hunt group to log that agent in or out of. This only applies when logging in or out.

Example:

Page 398

Technical Manual

' Log agent 470 on at extension 200

axCallview.SetACDAgentState “200”, “470”, 1, “”

' Log the agent 470 off at this extension

axCallview.SetACDAgentState “”, “470”, 0, “”

' Put agent 470 on extension 213 into wrapup
%4707, 5, N

(call) state.

axCallview.SetACDAgentState “2137,

Page 399

Mitel MiContact Center Office SDK 6.2

15.31 SetSettingStr
SetSettingStr

This method writes a text-based setting to the CVMACRO. INT settings file.
Syntax:
SetSettingStr Section, Setting, Value

Parameters:

e Section: The section of the file where the settings can be found. A section is denoted by having its name enclosed in
square brackets, e.g., “[Section Name]”

e Setting: The name of the setting to write.

e Value: The text value to write to this setting.

Example:

' Write the last number dialed to the “ LastDialed ” setting of
' the "Telephone" section

axCallview.SetSettingStr “Telephone”, “ LastDialed ”, axCallview.Digits

Notes:

The CVMACRO. INI file is broken down into sections and key entries, e.g.,
[Section1]
Setting1=Value
Setting2=0Other Value

Page 400

Technical Manual

15.32 SetSettingVal
SetSettingVal

This method writes a numerical setting to the CVMACRO . INT settings file.
Syntax:
SetSettingVal Section, Setting, Value

Parameters:

e Section: The section of the file where the settings can be found. A section is denoted by having its name enclosed in
square brackets, e.g., “[Section Name]”

e Setting: The name of the setting to write.

e Value: The numerical value to write to this setting.

Example:

' Write a 1 to the “MacroSuccessful” setting within the “General” section to indicate
successful macro completion.

axCallview.SetSettingVal “General”, “MacroSuccessful”, 1

Notes:

The CVMACRO. INI file is broken down into sections and key entries, e.g.,
[Section1]
Setting1=Value
Setting2=0Other Value

Page 401

Mitel MiContact Center Office SDK 6.2

15.33 Shell
Shell

This command launches the given application, specified using its filename. If the file cannot be found, or a problem occurs
launching the file, an error is generated.

Syntax:

Shell Filename

Parameter:

Filename: This string value is the fully pathed filename of the application to launch, e.g., C:\WINDOWS\NOTEPAD.EXE.

Example:

' Run Microsoft Access.

Shell (“C:\MSOFFICE\ACCESS\MSACCESS.EXE")

Page 402

Technical Manual

15.34 ShellEx
ShellEx

This command launches an application with specific command line options. If the application file cannot be found, or a problem
occurs launching the file, an error is generated.

Syntax:

ShellEx Filename, CommandLine

Parameters:

e Filename: This string value is the fully pathed filename of the application to launch, e.g.,
C:\WINDOWS\NOTEPAD.EXE.

e CommandLine: This string is the command line parameters to pass to the application. The contents of this string will
depend on the application being launched.

Example:

' Run Microsoft Access and load the customer database.

axCallview.ShellEx “C:\ACCESS\MSACCESS.EXE”, “C:\DATA\CUST.MDB”

Page 403

Mitel MiContact Center Office SDK 6.2

15.35 Uninitialise

Uninitialise

This method should be called to disable the telephony events of the Link Control, having previously enabled the events with the
Initialise method. The method returns True if events are successfully disabled and False otherwise.

Syntax:

Uninitialise

Parameters:

None.

Page 404

Technical Manual

16 Properties

This section documents the properties that are provided via the Callview Link Control.

Page 405

Mitel MiContact Center Office SDK 6.2

16.1 AccountCode

AccountCode

This read-only property returns the account code last entered on the currently selected call.

Page 406

Technical Manual

16.2 ACDAgentID
ACDAgentID

This read-only property returns the Agent ID of the ACD Agent currently logged in to the extension associated with CallViewer .

Page 407

Mitel MiContact Center Office SDK 6.2

16.3 ACDLoginCnt
ACDLoginCnt

This read-only property returns the number of times that the extension associated with CallViewer has logged into a “non-agent
ID” type hunt group.

Page 408

Technical Manual

16.4 ACDLoginCntAgID
ACDLoginCntAgID

This read-only property returns the number of times that an ACD agent has logged into an “agent ID” type hunt group at the
extension device that CallViewer is associated with in the current session.

Page 409

Mitel MiContact Center Office SDK 6.2

16.5 ACDStatus
ACDStatus

This read-only property returns the current status of the ACD Agent logged in to the extension associated with CallViewer . The status
is returned as an integer, with the following meaning:

Value Description

0 Logged Out

1 Logged In

Free

Busy (Call)

Busy (E-mail)

Wrapup (Call)

Busy N/A (DND)

Wrapup (E-mail)

| N[Ol B~ WOWIDN

Free (E-mail)

Page 410

Technical Manual

16.6 CallAns
CallAns

This read-only property returns True if the currently selected call has been answered, and False otherwise.

Page 411

Mitel MiContact Center Office SDK 6.2

16.7 CallAnsTime
CallAnsTime

This read-only property returns the date and time that the currently selected call was answered. The value is returned as a
string in long date format, e.g., “ April 22, 2006 11:50:08”. The long date format is defined in the Regional settings section of the

Windows Control Panel.

Page 412

Technical Manual

16.8 CallCLI
CallCLI

This read-only property returns True if the currently selected call was received with Caller ID and False otherwise.

Page 413

Mitel MiContact Center Office SDK 6.2

16.9 CallContact
CallContact

This read-only property returns True if the currently selected call was identified by the MiCC Office Server using its Telephone
Number Import. It returns False if the call was not identified, or if no call is present at the extension. Calls that were not received

with Caller ID will always return False for this variable.

Page 414

Technical Manual

16.10 CallCtrl
CallCtrl

This read-only property returns True if has call control enabled, or False otherwise.

Call control can be enabled or disabled from the Enable Call Control option on the Call Control tab of the Options dialog. If the
setting is disabled, no call control capability is available in CallViewer , either from the Macro Language or from the user

interface.

Page 415

Mitel MiContact Center Office SDK 6.2

16.11 CallHeld
CallHeld

This read-only property returns True if the currently selected call is currently held, or False otherwise.

Page 416

Technical Manual

16.12 Callld
Calild

This read only property returns the internal Call ID used by Server to identify a call. This can be used to index the calls in an
application's own internal call model.

Page 417

Mitel MiContact Center Office SDK 6.2

16.13 Callint
Callint

This read-only property returns True if the currently selected call is internal, or False for external.

Page 418

Technical Manual

16.14 CallMediaType
CallMediaType

This read-only property returns a string identifying the type of media that is currently being processed by CallViewer t. This
property will only return a valid value if called within a user action executed by a rule firing.

Possible values are “CALL” if the user action was executed because of a call, or “EMAIL” if the action fired because of an e-
mail being routed to the agent logged in at the extension associated with CallViewer .

Page 419

Mitel MiContact Center Office SDK 6.2

16.15 CallOut
CallOut

This read-only property returns True if the currently selected call is outbound, or False for inbound.

The direction of the call is determined to how the call started on the current extension. For example, an external call may have
been dialed to an external party, but subsequently transferred to another extension; in such an instance the call is considered
inbound for the receiving extension, since it received a call, rather than made a call.

Page 420

Technical Manual

16.16 CallRingTime
CallRingTime

This read-only property returns the number of seconds that the currently selected call has been ringing for. If the call has been
answered, this property will return the number of seconds that the call was ringing for.

Page 421

Mitel MiContact Center Office SDK 6.2

16.17 Calls
Calls

This read-only property returns the number of calls active at the associated extension, or 0 if no calls are active.

Page 422

Technical Manual

16.18 CallSelected
CallSelected

This read-only property returns the index of the currently selected call in CallViewer ’s call list, or O if no calls are currently
selected. The first call in the list is “1,” the next “2,” and so on.

Page 423

Mitel MiContact Center Office SDK 6.2

16.19 CallSerialNo
CallSerialNo

This read-only property returns the internally generated unique serial number associated with the current call.

You can use call serial number to tag records in your database, and subsequently map your database records to call log
information in the MiCC Office Server databases. The serial number is written to the “TTSerialNo” field in the MiCC Office
Server databases.

Page 424

Technical Manual

16.20 CallSource

CallSource

This read-only property returns the index of the currently selected call in CallViewer ’s call list, or O if no calls are currently
selected.

Page 425

Mitel MiContact Center Office SDK 6.2

16.21 CallStartTime
CallStartTime

This read-only property returns the date and time that the currently selected call started to ring. The value is returned as a
string in long date format, e.g., “ April 22, 2006 11:50:02”. The long date format is defined in the Regional settings of the

Windows Control Panel.

Page 426

Technical Manual

16.22 CallWasOnHold
CallwWasOnHold

This read-only property returns True if the current call was on hold, but was then retrieved, or False otherwise.

Page 427

Mitel MiContact Center Office SDK 6.2

16.23 CanCallAnswer

CanCallAnswer

This read-only property returns True if a call active at the extension can currently be answered by CallViewer , or False

otherwise.
Typically, answering is available if the following conditions are met:

e There is a call alerting the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports answering calls via call control.

e The license obtained by allows calls to be answered.

Page 428

Technical Manual

16.24 CanCallConf
CanCallConf

This read-only property returns True if a call present at the extension can currently be conferenced by CallViewer , or False
otherwise.
Typically, conference is available if the following conditions are met:

e There are answered or held calls at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports conferencing calls via call control.

e The license obtained by allows calls to be conferenced.

Page 429

Mitel MiContact Center Office SDK 6.2

16.25 CanCallDial
CancCallDial

This read-only property returns True if new calls can be made by at the extension, or False otherwise.

Typically, dialing is available if the following conditions are met:

The extension associated with is idle, or has an exclusively held call present.

Call control is enabled in CallViewer ’s options.

e The telephone driver supports making calls via call control.

The license obtained by allows calls to be dialed .

Page 430

Technical Manual

16.26 CanCaliDialDig
CanCallDialDig

This read-only property returns True if digits can currently be dialed online at the extension by CallViewer , or False otherwise.

Typically, dialing of digits is available if the following conditions are met:

There is an answered call at the extension associated with CallViewer .

e Call control is enabled in CallViewer ’s options.

The telephone driver supports dialing digits via call control.

The license obtained by allows digits to be dialed .

Page 431

Mitel MiContact Center Office SDK 6.2

16.27 CanCallDrop
CanCallDrop

This read-only property returns True if a call on the extension can currently be dropped by CallViewer , or False otherwise.

Typically, dropping calls is available if the following conditions are met:

There is an outbound or answered call at the extension associated with CallViewer .

Call control is enabled in CallViewer ’s options.

e The telephone driver supports dropping calls via call control.

The license obtained by allows calls to be dropped.

Page 432

Technical Manual

16.28 CanCaliDropAll
CanCaliDropAll

This read-only property returns True if the extension can currently be reset (all calls dropped) by CallViewer , or False
otherwise.
Typically, dropping all calls is available if the following conditions are met:

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports the handset being reset via call control.

e The license obtained by allows the handset to be reset via call control.

Page 433

Mitel MiContact Center Office SDK 6.2

16.29 CanCallHoldEXx
CanCallHoldEx

This read-only property returns True if the call currently at the extension can be exclusively held by CallViewer , or False

otherwise.
Typically, exclusively holding calls is available if the following conditions are met:

e There is an external outbound, or answered call at the extension associated with CallViewer .

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports exclusively holding calls via call control.

e The license obtained by allows calls to be held exclusively.

Page 434

Technical Manual

16.30 CanCallHoldSys
CanCallHoldSys

This read-only property returns True if the call currently on the extension can be placed on system hold (parked), or False
otherwise.
Typically, system-holding calls is available if the following conditions are met:

e There is an external outbound, or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports system holding calls via call control.

e The license obtained by allows calls to be system held.

Page 435

Mitel MiContact Center Office SDK 6.2

16.31 CanCallRetrieve

CanCallRetrieve

This read-only property returns True if the call currently selected can be retrieved from exclusive hold by CallViewer , or False

otherwise.
Typically, retrieving calls is available if the following conditions are met:

e There is an exclusively held call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports retrieving calls via call control.

e The license obtained by allows calls to be retrieved.

Page 436

Technical Manual

16.32 CanCallTrans

CanCallTrans

This read-only property returns True if an enquiry transfer can be performed on the currently selected call by CallViewer , or
False otherwise.

Typically, enquiry transfer is available if the following conditions are met:
e There is an external outbound, or answered call at the extension associated with CallViewer .
e Call control is enabled in CallViewer ’s options.
e The telephone driver supports enquiry transfer of calls via call control.

e The license obtained by CallViewer allows for enquiry transfer of calls.

Page 437

Mitel MiContact Center Office SDK 6.2

16.33 CanCaliTransComp

CanCaliTransComp

This read-only property returns True if the Complete Transfer call feature is enabled, or False otherwise.

Typically, complete transfer is available if the following conditions are met:

e There is a previously set-up consultation call at the extension associated with CallViewer , which is external outbound,
or answered.

e Call control is enabled in CallViewer ’s options.
e The telephone driver supports complete transfer via call control.

e The license obtained by allows for transfer completion of calls.

Page 438

Technical Manual

16.34 CanCallTransRedir
CanCallTransRedir

This read-only property returns True if the Transfer / Redirect call control feature is enabled, or False otherwise.

Typically, transfer/redirection of calls is available if the following conditions are met:

There is an external or answered call at the extension associated with CallViewer .

e Call control is enabled in CallViewer ’s options.

e The telephone driver supports transferring / redirecting calls via call control.

The license obtained by CallViewer allows calls to be transferred / redirected.

Page 439

Mitel MiContact Center Office SDK 6.2

16.35 ClientActive
ClientActive

This read-only property returns True if the associated has a session with the MiCC Office Server , or False otherwise. If no
session is established, telephone events, and call control methods will not work.

Page 440

Technical Manual

16.36 ClientName

ClientName

This read-only property returns the local network name associated with the CallViewer .

It is provided for backward compatibility with earlier versions of CallViewer , which used this value as the network name for the
running instance of CallViewer .

Page 441

Mitel MiContact Center Office SDK 6.2

16.37 ClientNameNum

ClientNameNum

This read-only property returns the local network name associated with CallViewer , with all non-numeric characters removed.
This property is provided for backward compatibility to previous versions of CallViewer .

Page 442

Technical Manual

16.38 Clipboard
Clipboard

This read-only property returns the current contents of the clipboard, if the contents can be formatted as a text string. If the
contents cannot be formatted as text, which is dependent on the application that put the text on the clipboard, then a blank

string is returned.

Page 443

Mitel MiContact Center Office SDK 6.2

16.39 Col(x)
Col(x)

This read-only property returns one of the seven [Colx] macro variables used by the Macro language.
e Col(1) returns the line or extension number for the current call.

e Col(2) returns either the DNIS description for direct dialed external calls, the trunk line description for non-direct dialed
external calls, or the string “[Internal]” for internal calls.

e Col(3) to Col(7) return the corresponding fields from the Telephone Number Import on the Contact Center Server for
the current call. Typically, Col(3) will equate to the caller's company or name if it is identified against the Telephone
Number import.

Page 444

Technical Manual

16.40 ConfPartyLimit
ConfPartyLimit

This read-only property returns the number of parties that can be included in a conference call. On some systems this will
include the person who initiated the conference call. It is also possible that this property will return —1, if the maximum number

is not known.

Page 445

Mitel MiContact Center Office SDK 6.2

16.41 CTIServerName

CTIServerName

This read-only property returns the name of the Contact Center Server that the associated is connected to.

Page 446

Technical Manual

16.42 Data(x)
Data(x)

This read-only property returns the value associated with one of the eleven [Datax] macro variables used by the Macro
language.

Page 447

Mitel MiContact Center Office SDK 6.2

16.43 DDE(x)
DDE(x)

This read-only property returns the value associated with one of the six [DDEx] macro variables used the Macro language. The
variable represents the data returned by the last DDERequest command for the given DDE channel.

Page 448

Technical Manual

16.44 DDIDigits
DDIDigits

This read-only property returns the DID Digits associated with the currently selected call.

Page 449

Mitel MiContact Center Office SDK 6.2

16.45 DevFirstRung
DevFirstRung

This read-only property equals the extension or group device that was rung first by the current call. For an inbound call this will
be the first device that the call alerted. For an outbound external call on a trunk line, this variable will contain the trunk line that
the external call is connected to. For an outbound internal call, it will contain the extension device of the party that the call was

made to.
This property will never return a device that is not entered into MiCC Office Server ’s Extension or Groups window.

Page 450

Technical Manual

16.46 DialCombo
DialCombo

This read-only property returns the current value that is entered in the Dial Area of the CallViewer . This value is either the
telephone number that the user last entered to dial, or the telephone number of the last call active at the extension.

Page 451

Mitel MiContact Center Office SDK 6.2

16.47 DialLast
DialLast

This read-only property returns the first item in the Dial List. The Dial List contains the last 20 telephone numbers that called
this extension or were called by it. The first item in the Dial List is therefore the telephone number of the last person contacted.

Page 452

Technical Manual

16.48 DialPrefix
DialPrefix

This read-only property returns the dial prefix to use when making outbound calls, as configured in the MiCC Office Server . If
is using local dial rules, this variable will still return the MiCC Office Server configured dial prefix.

This string will be blank if is not connected to MiCC Office Server .

Page 453

Mitel MiContact Center Office SDK 6.2

16.49 DigitFormatCount
DigitFormatCount

This read-only property returns the number of formats that the GetDigitFormat method can support.

Page 454

Technical Manual

16.50 Digits
Digits

This read-only property returns the digits or the telephone number of the call currently at the associated .

This variable can be used to perform screen popping of an external application, whereby the caller's details are displayed in the
company database when a call is made or received.

However, performing a search by telephone number in a database can be inexact. This is because different users will enter
telephone numbers in different formats, e.g. “”, while this variable contains an unformatted telephone number, e.g., “.”

An alternative method of screen popping, which is more reliable, is to use the 6-field Telephone Import file with to import known
contact information from the company database on a regular basis. Four of these six fields can contain custom information,
which is made available in the fields 4 to 7 of the Col(x) property. For example, if Col(7) contained the primary key for the
associated record in the company database, then locating the correct record when a call is made or received could be achieved
very quickly in a screen popping macro.

Note: If an e-mail has been routed to , you should use the [EmailFromAddr] variable for information on where it came from,
because [Digits] applies only to call-based media.

Page 455

Mitel MiContact Center Office SDK 6.2

16.51 DNIS
DNIS

This read-only property returns one of the following string values for the current call:

e For inbound external DID calls it will contain the DNIS description associated with the DID number dialed by the distant
end.

e For external non- DID calls it will contain the description of the trunk line that the call is on.

e Forinternal calls it will contain “[Internal].”

Page 456

Technical Manual

16.52 EmailFromAddr
EmailFromAddr

This read-only property contains the e-mail address of the original sender of an e-mail that has been routed to the agent logged
in to the extension associated with this CallViewer . If the agent has not been routed an e-mail, then this property is a blank
string.

This property can be used to perform screen popping of an external application, whereby the contact’s details are displayed in
the company database when an e-mail is received. This would be achieved by searching the company database for records
matching the given e-mail address.

A more reliable method however, is to use the 6-field Telephone Import file with MiCC Office Server to import known contact
information from the company database on a regular basis. Four of these six fields can contain custom information, which is
made available in the fields 4 to 7 of the Col(x) property. For example, if Col(7) contained the primary key for the associated
record in the company database, then locating the correct record when a routed e-mail is received could be achieved very
quickly in a screen popping macro.

Page 457

Mitel MiContact Center Office SDK 6.2

16.53 EmailFromName

EmailFromName

This read-only property contains the description assigned against the e-mail address of the original sender of an e-mail that has
been routed to the agent logged in to the extension associated with this CallViewer .

The e-mail address description is often defined by the original sender of the e-mail, or by their local e-mail server. If the agent
has not been routed an e-mail, this variable is a blank string.

Page 458

Technical Manual

16.54 EmailGrpQ
EmailGrpQ

This read-only property returns the device number of the group that this e-mail was sent to by the external party. For example,
if the external party sends an e-mail to “sales@xyz.com,” and group “1000” is mapped to “sales@xyz.com,” this field will return
“1000” if the e-mail sent to “sales@xyz.com” was routed by Intelligent Router r to the agent logged in at the extension that this
is associated with.

Page 459

Mitel MiContact Center Office SDK 6.2

16.55 EmailProcessing

EmailProcessing

This read-only property returns True if the extension associated with is processing an e-mail message routed by Intelligent
Router , otherwise it returns False.

This variable is useful when writing user actions to perform screen popping using the Caller ID or e-mail address that may need
to deal with calls and e-mails being received at the same time. This variable can be used to determine whether to perform the
screen pop using the Caller ID / dialed digits, or the e-mail address of the message originator.

If you your screen popping action uses the Col(x) property instead, along with the Contact Center Server Telephone Import
database, the EmailProcessing property will be of use only if trying to decide if other e-mail related variables are valid or not.

Page 460

Technical Manual

16.56 EmailSize

EmailSize

This read-only property returns the size in bytes of the e-mail that has been routed to the agent logged in at the extension that
CallViewer is associated with. If the agent has not been routed an e-mail, this variable returns an empty string.

Page 461

Mitel MiContact Center Office SDK 6.2

16.57 EmailSubjectText
EmailSubjectText

This read-only property returns the subject line of the e-mail message that has been routed to the agent logged in at the
extension associated with CallViewer . The subject line is exactly the same as the subject line in the e-mail that is available in
the agent’s e-mail client. If the agent has not been routed an e-mail, this property returns an empty string.

Page 462

Technical Manual

16.58 EmailTag
EmailTag

This read-only property returns the tag code of the e-mail message that has been routed to the agent logged in at the extension
associated with CallViewer . The e-mail tag code is an internal reference string assigned by MiCC Office Server to the e-mail
message. It is unique in real-time for all active e-mail messages being queued by any instance of Intelligent Router . If the
agent has not been routed an e-mail, this property returns an empty string.

Page 463

Mitel MiContact Center Office SDK 6.2

16.59 EmailTagOrig
EmailTagOrig

This read-only property returns the original tag number of the e-mail message that has been routed to the agent logged in at
the extension associated with CallViewer . The original e-mail tag number is an internal reference of the e-mail messages
assigned by Intelligent Router instance that downloaded the original message.

The original tag is also incorporated into the subject text of the routed e-mail, and so can be viewed in the e-mail client that
receives the routed messages. When incorporating the tag into the subject text, it is surrounded between “#[” and “I#” as well
as being formatted in hexadecimal (base 16), and padded to 8 characters, so a tag of 19 would appear as “#[{00000013]#".

Page 464

Technical Manual

16.60 EmailToAddr
EmailToAddr

This read-only property returns the e-mail address of the mailbox that the external e-mail was sent to, for e-mails that have
been routed to the agent logged in at the extension associated with CallViewer . This e-mail address equates to the address
associated with a media blending queue. If the agent has not been routed an e-mail, this property returns an empty string.

Page 465

Mitel MiContact Center Office SDK 6.2

16.61 EmailToName

EmailToName

This read-only property contains the description assigned against the e-mail address of the mailbox that the external e-mail was
sent to. This only applies to those e-mails that have been routed to the agent logged in to the extension associated with this
CallViewer . The e-mail address description is often defined by the original sender of the e-mail, or by their local e-mail server.

If the agent has not been routed an e-mail, this property is a blank string.

Page 466

Technical Manual

16.62 INIFile
INIFile

This read-only property returns the current INI file used by the associated CallViewer . This property is provided for backward
compatibility. In version 4 the vast majority of settings are stored in the registry, rather than in an INI file.

Page 467

Mitel MiContact Center Office SDK 6.2

16.63 IsConnected

IsConnected

This read-only property returns True if is currently running, and a successful connection is established between and the
CallViewer Link Control. When this property returns False, it is likely that other property requests and other method calls will

fail.

Page 468

Technical Manual

16.64 Line

Line

This read-only property returns the line or extension number for the current call in the associated call list.

Page 469

Mitel MiContact Center Office SDK 6.2

16.65 LocalExtension

LocalExtension

This read-only property returns the actual extension number associated with the CallViewer .

Page 470

Technical Manual

16.66 LongDate
LongDate

This read-only property returns today’s date in a long format, as defined in the Regional settings of Windows Control Panel.

Page 471

Mitel MiContact Center Office SDK 6.2

16.67 LongTime

LongTime

This read-only property returns the current time in long format, as defined in the Regional settings of Windows Control Panel.

Page 472

Technical Manual

16.68 Macros

Macros

This read-only property returns the number of macros that are concurrently running. This is provided for backwards
compatibility with earlier versions of where there was a limit on the number of macros that could run concurrently. In version 4,
all user actions run independently of each other, and several can run at once. In version 4, this variable always returns 1.

Page 473

Mitel MiContact Center Office SDK 6.2

16.69 MacrosNested

MacrosNested

This variable returns the nested level of this user action, which can be used to decide if the user action has been executed by
another. This is provided for backwards compatibility with earlier versions of CallViewer . In version 4 all user actions run

independently of each other, and so this variable always returns 0.

Page 474

Technical Manual

16.70 MediumDate

MediumDate

This read-only property returns today’s date in medium format, as defined in the Regional settings of Windows Control Panel.

Page 475

Mitel MiContact Center Office SDK 6.2

16.71 MediumTime

MediumTime

This read-only property returns the current time in medium format, as defined in the Regional settings of Windows Control
Panel.

Page 476

Technical Manual

16.72 ShortDate
ShortDate

This read-only property returns today’s date in short format, as defined in the Regional settings of Windows Control Panel.

Page 477

Mitel MiContact Center Office SDK 6.2

16.73 ShortTime
ShortTime

This read-only property returns the current time in short format, as defined in the Regional settings of Windows Control Panel.

Page 478

Technical Manual

16.74 Titlebar
Titlebar

This read-only property returns the titiebar text of the currently active application window.

Page 479

Mitel MiContact Center Office SDK 6.2

16.75 Username

Username

This read-only property returns the name of the user currently logged in at this computer. If your computer does not require you
to log on, this property will return a blank string.

Page 480

Technical Manual

16.76 WinDir
WinDir

This read-only property returns the full path to the Windows folder.

Page 481

Mitel MiContact Center Office SDK 6.2

16.77 WinOS

WinOS

This read-only property returns the operating system that the script is running on. It can be one of the following:

Value Operating System

WIN95 Windows 95

WIN98 Windows 98

WINME Windows ME

WINNT Windows NT

WIN2000 Windows 2000

WINXP Windows XP up to and including Service Pack 1
WINXP_SP2 Windows XP Service Pack 2 or later

WINUNK Unknown operating system

Page 482

Technical Manual

16.78 WinSysDir
WinSysDir

This read-only property returns the full path to the Windows system folder.

Page 483

Mitel MiContact Center Office SDK 6.2

17 Events

This section describes the events that are provided via the Callview Link Control when it is enabled for events. Events are only
fired by the control after the Initialise method has been called.

Page 484

Technical Manual

17.1 Busy
Busy

This event is fired when the handset is placed off hook, for example before dialing a phone number when the handset is picked
up.

Parameters:

None.

Page 485

Mitel MiContact Center Office SDK 6.2

17.2 CallAnswer

CallAnswer

This event is fired when a call is answered at the current extension. It is also fired when an e-mail is routed to the extension.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialeddialled number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 486

Technical Manual

17.3 CallDigits
CallDigits

This event is fired when a call at the current extension receives a different Caller ID from that which was available when the call was first
presented. The event is not fired when the call is first presented; it is only fired if the dialed digits change during a call.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 487

Mitel MiContact Center Office SDK 6.2

17.4 CallHeld
CallHeld

This event is fired when a call is put on either system or exclusive hold at the current extension.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 488

Technical Manual

17.5 Callldentified
Callldentified

This event is fired when a call at the current extension is identified in the MiCC Office Server import.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 489

Mitel MiContact Center Office SDK 6.2

17.6 CallNew
CallNew

This event is fired when a call is first presented at the current extension, be it internal or external, inbound or outbound. It is also fired
when an e-mail is routed to the extension.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 490

Technical Manual

17.7 CallRemoved

CallRemoved

This event is fired when a call at the current extension is removed, either because the callee or caller dropped the call.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 491

Mitel MiContact Center Office SDK 6.2

17.8 CallRetrieved
CallRetrieved

This event is fired when a call is retrieved (having previously been on hold) at the current extension.

Parameters:

e DN: For external calls, this is the line that the call is on. For internal calls it is the extension called or calling.

e DNIS: For inbound direct dialed external calls, this is the DNIS text of the DID number. For other external calls, this is the
description of the line that the call is on. For internal calls, the text [Internal] is used.

e Caller ID : For inbound external calls, this is the number of the calling party if the information was made available or the string [
No Caller ID received!] if no Caller ID was provided. For all other calls, it is the number or extension that the call is connected to.

e DID : For direct dialed inbound external calls, this is the direct dial digits entered by the caller. The format of this string is
telephone system dependent, but is usually either the pertinent section of the dialed number, or the entire dialed number.

e Serial Number: For external calls, this is a unique string identifying the call. The MiCC Office Server uses this text to identify the
call.

e Call Flags: This bitfield holds various information on the state of the call, as follows:

Value Description
1 Internal call
2 Outbound call
4 Call held
8 Call answered
16 Contact identified in Telephone Import database
32 Caller ID received

e Field 2: This is the information from the second field of the Telephone Number import, if the contact was identified. Usually it is
the contact’s name or company name.

e Field 3: This is the information from the third field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 4: This is the information from the fourth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 5: This is the information from the fifth field of the Telephone Number import, if the contact was identified. It is user-
definable.

e Field 6: This is the information from the sixth field of the Telephone Number import, if the contact was identified. It is user-
definable.

Page 492

17.9 DNDStatusChanged
DNDStatusChanged

This event is fired when the do-not-disturb status at the current extension changes.

Parameters:

e Enable: This value is 0 if DND is being disabled, and 1 if being enabled.

o DND Message: This is the DND message.

e DND Text: This is the DND text.

Page 493

Technical Manual

Mitel MiContact Center Office SDK 6.2

17.10 ExtAccountCodeEntered
ExtAccountCodeEntered

This event is fired when an account code is entered into the handset while on an active call.

Parameters:

e Account Code: The account code that was entered against the call.

e Trunk Line: The trunk line of the external call that the account code was entered for.

Page 494

Technical Manual

17.11 ExtAgentLogon
ExtAgentLogon

This event is no longer fired, as of 2.5. To track agent log on/off, use the ExtAgentStatusChanged event, which has been
updated to support this functionality.

Page 495

Mitel MiContact Center Office SDK 6.2

17.12 ExtAgentStatusChanged
ExtAgentStatusChanged

This event is fired when an ACD agent'’s status changes.

Parameters:

e Agent Status: A number between 0 and 8 depicting the status that the ACD agent changed to, as follows:

0 — Logged Out
1-Logged In

2 — Free

3 — Busy (Call)

4 — Busy (E-mail)

5 — Wrapup (Call)

6 — Busy N/A (DND)
7 — Wrapup (E-mail)
8 — Free (E-mail)

e ACD Agent ID: The agent ID whose status has changed.

e Non-Agent Login Count: This is a number depicting the number of times that the ACD agent has logged into a non-
agent ID type hunt group.

e Agent Login Count: This is the number of times that the ACD agent has logged into an agent ID type hunt group.

e Hunt Group: This is the ACD hunt group that the agent is logging into.

Page 496

Technical Manual

17.13 ExtDigitsToVM
ExtDigitsToVM

Although it appears in Visual Basic, this event is not used.

Page 497

Mitel MiContact Center Office SDK 6.2

17.14 ExtDivertStatusChanged
ExtDivertStatusChanged

This event is fired when the divert status at the current extension changes.

Parameters:

e Forward State: A number between 0 and 4 representing the forward / divert state being changed to, as follows:

0 — None

1 — Immediate

2 — No Answer

3 — On Busy

4 — No Answer / On Busy

e Device: The extension device or group being diverted to.

Page 498

Technical Manual

17.15 ExtLostCall
ExtLostCall

This event is fired when a call alerting the current extension is dropped before being answered. The event is fired only if this is
the first extension that the call has been presented to.

Parameters:

e Trunk Line: The trunk line number that the call was active on.

e DNIS: A string containing one of the following values:

o The DID DNIS description for inbound external DID calls.
o The trunk line description for external non- DID calls.
o “Internal” for internal calls.

e Caller ID : The received Caller ID or dialed digits for the call. If no Caller ID was received for an inbound external call,
then this string contains “[No Caller ID]".

e DID : The DID digits for an inbound DID call, or an empty string for non- DID calls.

e Serial Number: The unique serial number for the call. The serial number is an internally generated string that the
Contact Center Server assigns to each external call.

e Field 2: This contains Field 2 from the matched record in the Contact Center Server Telephone Import database.

e Field 3: This contains Field 3 from the matched record in the Contact Center Server Telephone Import database.

e Field 4: This contains Field 4 from the matched record in the Contact Center Server Telephone Import database.

e Field 5: This contains Field 5 from the matched record in the Contact Center Server Telephone Import database.

e Field 6: This contains Field 6 from the matched record in the Contact Center Server Telephone Import database.

Page 499

Mitel MiContact Center Office SDK 6.2

17.16 ExtMessageToSupervisor

ExtMessageToSupervisor

Although it appears in Visual Basic, this event is not used.

Page 500

Technical Manual

17.17 Idle
Idle

This event is fired when the handset is replaced at an extension.

Parameters:

None.

Page 501

™ L
m MI tel © Copyright 2015, Mitel Networks Corporation. All Rights
m|te| com Reserved. The Mitel word and logo are trademarks of Mitel
: Networks Corporation.

Any reference to third party trademarks are for reference only and
Mitel makes no representation of ownership of these marks.

Powering connections

http://www.mitel.com/

	Table of Contents
	What's New
	Introduction
	What Is In the SDK?
	Installing the Software Developer's Kit
	Creating User-Defined Actions
	Macro Editor
	Saving Macros

	Simulation Mode
	Simulating Calls
	Simulating E-mails

	CallViewer Macro Language
	Macro Scripts
	Expressions in Macros
	ANSI References in Expressions
	Line Labels and Conditional Jumps
	Macro Variables
	Screen Popping With Actions
	Checking the Application
	Checking the Call
	Searching the Application for the Data
	Keystrokes
	Dynamic Data Exchange (DDE)
	Identifying The Application
	Application Names
	Topics
	Items
	Starting a DDE Conversation
	Supplying Data To Other Applications
	Obtaining Data From Another Applications
	Sending Commands To Other Applications
	Closing DDE Conversations
	Typical DDE Command Sequence
	Example DDE Conversation
	ODBC
	Other Alternatives

	Call Control With Actions
	Which Extension?
	Which Call?
	Blocking
	Call Control Example

	Advanced Topics
	Multitasking
	CallViewer as DDE Server

	CallViewerCallview Link Control
	To create a VBScript macro in CallViewerCallview:
	Using the Control
	Using Methods
	Using Properties
	Using Events
	Reference Introduction
	Macro Commands Introduction
	ActivateApp
	ActivateChild
	ActiveXScriptRun
	AppActivateLastFoc
	AppActivateLastFocCopyText
	AppActivateLike
	AppActivateLikeChild
	AppActivateLikeRight
	AppActivateLikeRightChild
	AppActivateLikeShell
	AppCopyText
	AppCopyTextEx
	AppWindowHide
	AppWindowMode
	AppWindowMoveTo
	AppWindowSetOrder
	AppWindowShow
	Beep
	CallAnswer
	CallConference
	CallDialDigits
	CallDialDigitsInput
	CallDrop
	CallDropAll
	CallHoldExclusive
	CallHoldSystem
	CallMake
	CallMakeAppActiveLast
	CallMakeInput
	CallMonitor
	CallPage
	CallPickup
	CallRecord
	CallRetrieve
	CallSelect
	CallTransfer
	CallTransferComplete
	CallTransRedircmd
	CallTransRedirDirect
	ClipboardAppendText
	ClipboardSetText
	DataSetNum
	DataSetStr
	DataSetStrChrReplace
	DataSetStrChrStrip
	DataSetStrLeft
	DataSetStrLen
	DataSetStrMid
	DataSetStrRight
	DDEClose
	DDEOpen
	DDEPoke
	DDERequest
	DDESendCmd
	DDESetAppName
	DDESetTimeOut
	DDESetTimeOutWarningOff
	DDESetTopic
	End
	ExitMacroAppActive
	ExitMacroIfCallType
	ExitMacroIfNoCalls
	ExitMacroNumValue
	ExitMacroStrValue
	FileClose
	FileOpen
	FileRead
	FileReadLine
	FileWrite
	FileWriteLine
	FormatTelephoneNumber
	GetIniSetting
	GlobalDataGet
	GlobalDataSetNum
	GlobalDataSetStr
	Gosub...Return
	Goto
	GotoIfAppActive
	GotoIfAppActiveChild
	GotoIfAppActiveRight
	GotoIfAppActiveRightChild
	GotoIfAppFocus
	GotoIfAppFocusChild
	GotoIfAppFocusRight
	GotoIfAppFocusRightChild
	GotoIfCallType
	GotoIfDateBetween
	GotoIfDDESendCmd
	GotoIfFileExists
	GotoIfMessageBox
	GotoIfMessageBoxCustom
	GotoIfNoCalls
	GotoIfNoRecords
	GotoIfNumValue
	GotoIfStrLen
	GotoIfStrValue
	GotoIfStrValueLeft
	GotoIfStrValueLike
	GotoIfStrValueMid
	GotoIfStrValueRight
	GotoIfTimeBetween
	GotoIfWeekDay
	InputBox
	intAbout
	intAutoMacro
	intButtonsConfig
	intCallDetails
	intClearScreen
	intDebugWindow
	intExit
	intGWin
	intHotkeyMgr
	intRefreshNetworkLink
	intSettingsCC
	intSettingsGWin
	intSettingsAdvanced
	intSettingsNetwork
	intSettingsWindow
	intSizeNormal
	intSizeSmall
	LocalDataGet
	LocalDataSetNum
	LocalDataSetStr
	MacroBtnRun
	MessageBox
	MessageBoxCustom
	MousePointer
	MousePos
	ODBCClose
	ODBCGetField
	ODBCMove
	ODBCOpen
	ODBCSetFieldNum
	ODBCSetFieldStr
	PostMessage
	SendKeys
	SendKeysEx
	SendKeysNoWait
	SendMessage
	SetAccountCode
	SetACDAgentState
	SetErrorsFatal
	SetForwardState
	SetIniSettingNum
	SetIniSettingStr
	SetKeyState
	SetStatusLine
	SetTrunkCallParam
	SetVolume
	Shell
	ShellEx
	Wait
	WaitAppTitle
	WaitAppTitleTimeOut
	YieldToOs
	Macro Variables
	AreaPrefix
	AccountCode
	ACDAgentID
	ACDLoginCnt
	ACDLoginCntAgID
	ACDStatus
	CallAns
	CallAnsTime
	CallCLI
	CallContact
	CallCtrl
	CallHeld
	CallInt
	CallMediaType
	CallOut
	CallRingTime
	Calls
	CallSelected
	CallSerialNo
	CallSource
	CallStartTime
	CallWasOnHold
	CanCallAnswer
	CanCallConf
	CanCallDial
	CanCallDialDig
	CanCallDrop
	CanCallDropAll
	CanCallHoldEx
	CanCallHoldSys
	CanCallRetrieve
	CanCallTrans
	CanCallTransComp
	CanCallTransRedir
	ConfPartyLimit
	ClientActive
	ClientName
	ClientNameNum
	Clipboard
	Col1
	Col2
	Col3
	Col4
	Col5
	Col6
	Col7
	CTIServerName
	Data1
	Data10
	Data11
	Data2
	Data3
	Data4
	Data5
	Data6
	Data7
	Data8
	Data9
	DDE1
	DDE2
	DDE3
	DDE4
	DDE5
	DDE6
	DDIDigits
	DevFirstRung
	DialCombo
	DialLast
	DialPrefix
	Digits
	DNIS
	EmailFromAddr
	EmailFromName
	EmailGrpQ
	EmailProcessing
	EmailSize
	EmailSubjectText
	EmailTag
	EmailTagOrig
	EmailToAddr
	EmailToName
	EOF1
	EOF2
	EOF3
	EOF4
	EOF5
	ErrorDesc
	ErrorNum
	INIFile
	Line
	LocalExtension
	LongDate
	LongDistPref
	LongTime
	Macros
	MacrosNested
	MediumDate
	MediumTime
	ODBCPos1
	ODBCPos2
	ODBCPos3
	RND
	ShortDate
	ShortTime
	TelNoFormatCount
	Titlebar
	WinDir
	WinOS
	WinSysDir

	Methods
	AppActivateLike
	AppActivateLikeChild
	CallAnswer
	CallConference
	CallDialDigits
	CallDrop
	CallDropAll
	CallHoldExclusive
	CallHoldSystem
	CallMake
	CallMonitor
	CallPage
	CallPickup
	CallRetrieve
	CallSelect
	CallTransfer
	CallTransferComplete
	CallTransRedir
	CallTransRedirDirect
	DoCommand
	GetDigitFormat
	GetSettingStr
	GetSettingVal
	Initialise
	IsWindowOpen
	MacroBtnRun
	SendKeys
	SendKeysEx
	SetAccountCode
	SetACDAgentState
	SetSettingStr
	SetSettingVal
	Shell
	ShellEx
	Uninitialise

	Properties
	AccountCode
	ACDAgentID
	ACDLoginCnt
	ACDLoginCntAgID
	ACDStatus
	CallAns
	CallAnsTime
	CallCLI
	CallContact
	CallCtrl
	CallHeld
	CallId
	CallInt
	CallMediaType
	CallOut
	CallRingTime
	Calls
	CallSelected
	CallSerialNo
	CallSource
	CallStartTime
	CallWasOnHold
	CanCallAnswer
	CanCallConf
	CanCallDial
	CanCallDialDig
	CanCallDrop
	CanCallDropAll
	CanCallHoldEx
	CanCallHoldSys
	CanCallRetrieve
	CanCallTrans
	CanCallTransComp
	CanCallTransRedir
	ClientActive
	ClientName
	ClientNameNum
	Clipboard
	Col(x)
	ConfPartyLimit
	CTIServerName
	Data(x)
	DDE(x)
	DDIDigits
	DevFirstRung
	DialCombo
	DialLast
	DialPrefix
	DigitFormatCount
	Digits
	DNIS
	EmailFromAddr
	EmailFromName
	EmailGrpQ
	EmailProcessing
	EmailSize
	EmailSubjectText
	EmailTag
	EmailTagOrig
	EmailToAddr
	EmailToName
	INIFile
	IsConnected
	Line
	LocalExtension
	LongDate
	LongTime
	Macros
	MacrosNested
	MediumDate
	MediumTime
	ShortDate
	ShortTime
	Titlebar
	Username
	WinDir
	WinOS
	WinSysDir

	Events
	Busy
	CallAnswer
	CallDigits
	CallHeld
	CallIdentified
	CallNew
	CallRemoved
	CallRetrieved
	DNDStatusChanged
	ExtAccountCodeEntered
	ExtAgentLogon
	ExtAgentStatusChanged
	ExtDigitsToVM
	ExtDivertStatusChanged
	ExtLostCall
	ExtMessageToSupervisor
	Idle

