Call Information Logging, CL

OPERATIONAL DIRECTIONS

00 Mitel



NOTICE

The information contained in this document is believed to be accurate in all respects
but is not warranted by Mitel Networks™ Corporation (MITEL®). Mitel makes no
warranty of any kind with regards to this material, including, but not limited to, the
implied warranties of merchantability and fitness for a particular purpose. The informa-
tion is subject to change without notice and should not be construed in any way as a
commitment by Mitel or any of its affiliates or subsidiaries. Mitel and its affiliates and
subsidiaries assume no responsibility for any errors or omissions in this document.
Revisions of this document or new editions of it may be issued to incorporate such
changes.

No part of this document can be reproduced or transmitted in any form or by any means
- electronic or mechanical - for any purpose without written permission from Mitel
Networks Corporation.

TRADEMARKS

The trademarks, service marks, logos and graphics (collectively "Trademarks")
appearing on Mitel's Internet sites or in its publications are registered and unregistered
trademarks of Mitel Networks Corporation (MNC) or its subsidiaries (collectively
"Mitel") or others. Use of the Trademarks is prohibited without the express consent from
Mitel. Please contact our legal department at l[egal@mitel.com for additional informa-
tion. For a list of the worldwide Mitel Networks Corporation registered trademarks,
please refer to the website: http://www.mitel.com/trademarks.

© Copyright 2018, Mitel Networks Corporation
All rights reserved

20/154 31-ANF 901 14 Uen G2 2018-10-08 2


http://www.mitel.com/trademarks

CALL INFORMATION LOGGING, CL

1.1

GENERAL

The Call Information Logging (CIL) feature registers all the calls made in an MX-ONE™
system.

The Call Information data contains logging information of internal calls, and incoming
and outgoing external calls. Also, calls abandoned during queuing or ringing will be
logged.

The CIL feature helps customers to analyze, and thus get control over, their phone
costs. Detailed information of calls can be obtained that permits the customer to
correctly charge these calls to the responsible parties.

The CIL data can be sent through the network port of a local Network Interface Card
(NIC) to a remote application with an established TCP/IP connection.

Using TCP/IP, V.24, or a parallel port, the CIL data can be logged to either an SQL
database or to a file on a server. It can then be handled by some post-processing appli-
cation.

GLOSSARY AND ACRONYMS

For a complete list of abbreviations and glossary, see the description for ACRONYMS,
ABBREVIATIONS AND GLOSSARY.

PREREQUISITES

20/154 31-ANF 901 14 Uen G2 2018-10-08



PROCEDURE

3 PROCEDURE

3.1 GENERAL

The CIL feature can have up to 10 active output connections individually configured
and activated. They can be configured to have any of the following (major) types: SQL,
file, TCP/IP stream, or V24 stream.

The type SQL, which is the primary, recommended type for MX-ONE, currently only
supports the subtype PostgreSQL. Other database engines (such as DB2, Oracle, and
Sybase) may be added in the future.

The type file, TCP/IP, and V24 stream support a number of formats as subtypes. These
include XML, comma-separated, general, and all the formats from MD110. The general
format uses a script language, which allows the user to define almost any format at
runtime.

There is also a none output subtype, which can be used if alarm functionality is needed
without any real storage of data.

The CIL feature may be used in the following ways:

. CIL output from a TCP/IP connection to a database or another server
. CIL output to the local or network file system

. CIL output forwarded to another LIM

It is recommended to set up one fixed local storage in every LIM, combined with a
central storage in a separate system.

For example configurations, see figure 1 A CIL Configuration on page 5 and figure 2
CIL Configuration with forwarding from LIM 2 to LIM 1 on page 6.

20/154 31-ANF 901 14 Uen G2 2018-10-08 4



CALL INFORMATION LOGGING, CL

Lim 1 Lim 2
Montor Manitor
(Register, call, or multiparty monitor) (Register, call, or multiparty monitor)
Call lagging program Zall logging program
Data recorder program Data recorder program
Forward? Forward?
v v
Qos- Dos-
supervision suparvision
v L4
Dutput 0 , Cutput O @
Active local | Filter 0 - Aciive local [ Filter 0 -
\ aed L 4
fil file
Cutput 1 . Output 1 ;
Active local P Filler 1 ——— Active local =¥ Filter 1
v h 4
Not Active e Not Active ner
'Du-tput g - Eluiput 9 :
Not Active e Filter O Not Active = Filler 9
_paq
S0L
catabase LI

Figure 1: A CIL Configuration

20/154 31-ANF 901 14 Uen G2 2018-10-08



PROCEDURE

LIM 1 LM 2
Maonitor Monitor
{Register, call, or multiparty manitor) (Register, call, or multiparty monitor)
Y
Call logging program Call legging program
k4
Cata recorder program Data recorder program
Forward
v
Jos- Qos-
Suparvision suparvision
Output 0 . Qutput O
Active local = Filter 0 Active local [ Filter 0
¥ local ¥ local
file file
Output 1 . Output 1 )
e ————————————— . e ———
Active local "{ Filter 1 Active local [P T1er T
¥ L 2
Output2 Ll Fijar 2 Outpul 2 gl Fjjyar 2
Active Mot Active
Dutpui 9 . COuiput 9 :
NotActive [T | er ¥ NotActive [7] | er?
ﬁ-
sSQL S0L
datab
datahaie e RDOUDA 2,
Figure 2: CIL Configuration with forwarding from LIM 2 to LIM 1
3.2 INITIATING CIL

The procedure for initiating the CIL feature is as follows:

1.

Initiate an output together with an output connection. The connection may be a
local, or network file, or a TCP/IP connection.

Initiate the call criteria for an output.

Optionally, initiate or set the condition code strings, number data handling, and

filtering options.

Activate the CIL feature.

20/154 31-ANF 901 14 Uen G2 2018-10-08



CALL INFORMATION LOGGING, CL

3.3

3.4

REMOVING CIL

The procedure for removing the CIL feature and the equipment associated with it is as
follows:

1. Deactivate the output.

2. Optionally, remove the call criteria for the output.

LOGGING TO FILE

The type file is stored daily in the file system, locally or over Network File System
(NFS), for one week before being overwritten. To each file name the system adds a
"daynumber" that reflects the day it was produced (for example, callData.1.xml call-
Data.2.xml 1= Monday, 2=Tuesday).

Logging to file is recommended as backup in case the logging to a database or
Management Center fails due to network problems. The commands callinfo_file to -
file, callinfo_sql_to_file, and callinfo_file to_sql can be used to repair the database log.

If the CIL files will be stored for more than six days, use a script file in a cron job to copy
the files to a location where there is sufficient disk space. A template script file for this
kind of copying is supplied as /etc/opt/eri_sn/template_scripts/callinfo_copy_script.sh.
This template script file includes instructions (as comments) on how to modify the
template script file, and how to run it automatically every night.

Note that CIL files can occupy a large amount of disk space. Make sure to only save
CIL data to disk in a way that does not exhaust your storage.

20/154 31-ANF 901 14 Uen G2 2018-10-08



4.1

4.1.1

4.1.1.1

4.1.1.2

4.1.1.3

EXECUTION

EXECUTION

CONFIGURE AND ACTIVATE THE CIL OUTPUT CONNEC-
TION

CONFIGURE THE OUTPUT CONNECTION AND START CIL OUTPUT

Execution

. Key the command callinfo_output_set to define the CIL output configuration .
This sets output destination, formatting rules, speed, and so on.

. Key the command callinfo_status_set -state on to activate the CIL output .

. Key the command callinfo_status_print to verify the result .

Note: Each command is entered as one line when entered manually.

Example 1, Basic Call Logging to SQL

The example shows the recommended basic setup, using local backup, with central
billing system. The local storage is used as a backup, if the connection to the central
storage is faulty.

How to set up a local storage in every LIM combined with a central storage in a sepa-
rate system:

. Enter commands

>callinfo_output_set -type file -subtype xml -dbname /var/opt/eri_sn/call_log-
ging/logfile -lim all -output O -local

>callinfo_status_set -output O -lim all -state on
How to set up the central storage in SQL for the billing system:
Enter commands

>callinfo_output_set -type sql -subtype postgreSQL -dbname smdr -server
ebcl195.mynet.com:0 -lim all -output 1

Example 2, Basic Call Logging to a central NFS storage

How to setup a basic logging to a central NFS storage, where the local storage is used
as a backup, if the connection to the central storage is faulty:

. Enter commands

>callinfo_output_set -type file -subtype XML -dbname /var/opt/eri_sn/call_log-
ging/lodfile -lim all -output 0 -local

>callinfo_status_set -output O -lim all -state on
How to set up the central storage in NFS for the billing system:

Enter commands

20/154 31-ANF 901 14 Uen G2 2018-10-08 8



CALL INFORMATION LOGGING, CL

>callinfo_output_set -type asyncfile -subype fp15 -dbname /call_log-
ging/central_1 -lim 1 -output 1 -format "utc"

>callinfo_status_set -lim all -forward 1 -state on

4.2 CHANGE THE OUTPUT CRITERIA

Note: Consider testing the result of an intended change by defining an additional
output to a separate file. You can, for example, define an extra output with
comma-separated format. Then take the created file, and use the callinfo_-
file_to_file command to trim your filter to provide the desired output.

For more information, see chapter 4.8 Test the CIL Output for TCP/IP on page 13.

4.2.1 PREREQUISITES

The current CIL output criteria are unsatisfactory.

4.2.2 EXECUTION
. Key the command callinfo_output_change to initiate the changed output criteria.
. Key the command callinfo_status_print to verify the result.

20/154 31-ANF 901 14 Uen G2 2018-10-08



EXECUTION

Table1 Change output

Measure/Question Observation/Comment
1 Is the current flexible output format to
be modified?
Flow
2 Determine the output number to Key the command callinfo_status_print.
START change.
v 3 Is the output active? Key the command callinfo_status_print.
1
4 Deactivate the output. Key the command callinfo_status_set -state off
N .
A CIL output can also be modified while it is
5 active. The deactivation is optional.
5 Define the displayed fields for the Key the command callinfo_output_set (with
- chosen output format. -subtype and - format parameters).
Y 6 Verify the results by printing the output | Key the command callinfo_status_print.
3 format.
4 N 7 Was the output deactivated in step 5? Key the command callinfo_status_print.
8 Activate the output. Key the command callinfo_status_set (with
L . -state on)
5
B
Y
7
N
8
i STOP
423 PRINT THE OUTPUT CRITERIA
4.2.3.1 Execution

Key the command callinfo_status_print to print the criteria.

20/154 31-ANF 901 14 Uen G2 2018-10-08 10



CALL INFORMATION LOGGING, CL

4.3

4.3.1

4.3.1.1

4.4

441

4.4.1.1

442

4.4.2.1

4.5

4.5.1

11

REMOVE THE CIL OUTPUT CONNECTION

REMOVE THE OUTPUT CONNECTION

. Deactivate the CIL output.

. Optionally, remove the call criteria for the output.

Execution

. Key the command callinfo_status_set -state off to deactivate the output connec-
tion .

. Key the command callinfo_status_print to verify the result .

For more details, see the command description for CALL INFORMATION LOGGING,
CL.

DIALED NUMBER MASKING

SET THE MASKING OF DIALED NUMBERS IN THE CIL OUTPUT
This feature makes it possible to truncate or mask dialed numbers, for example, for

reasons of integrity protection. The last digits of the dialed number will be removed from
the CIL output.

Execution

Key the command callinfo_mask_set to specify how to treat the dialed number
regarding masking.

PRINT THE DIALED NUMBER MODIFICATION DATA

Execution

Key the command callinfo_mask_print to print the current setting of number masking.

HEARTBEAT

SELECT THE HEARTBEAT FUNCTION

This feature makes it possible to periodically send information every 15 minutes from,
for example, an exchange to a service center. If the exchange should go down, the
service center can take necessary measures without losing too much valuable data.

It is not possible to initiate this facility if the local or network file system is used as a CIL
output device.

20/154 31-ANF 901 14 Uen G2 2018-10-08



4.5.1.1

4.6

4.6.1

4.6.1.1

46.2

4.6.2.1

4.6.3

4.6.3.1

46.4

4.6.4.1

EXECUTION

Execution

Use the -heartbeat option to the command callinfo_output_set to select the heartbeat
function.

A printout of the year, month, date, and exchange identity is generated to the ordinary
CIL output.

CONDITION CODE CHANGE AND PRINT

CONDITION CODE CHANGE

The condition code is a key element in CIL data. It designates the type of call that was
made or the telephony service that was granted. Condition codes can be customized
by setting customer-defined text strings to meet specific demands. This is only avail-
able for flexible formats.

Execution
. Key the command callinfo_condcode_set to change condition code characters .
. Key the command callinfo_condcode_print to verify the result .

PRINT INFORMATION ABOUT CONDITION CODES

Execution

Key the command callinfo_condcode_print to see how condition codes are presented
for each output format .

PRINT INFORMATION ABOUT OUTPUT FORMATS

Execution

Key the command callinfo_output_info to see information about output formats . This
command shows the currently available condition code types, subtypes, and formats,
plus some examples.

SET CUSTOMER-SPECIFIC TEXT STRINGS FOR CONDITION
CODES

Execution

. Key the command callinfo_condcode_set -string to customize text strings to be
printed in the CIL output .

. Key the command callinfo_condcode_set -restore to revert to the default format
(CC3).

20/154 31-ANF 901 14 Uen G2 2018-10-08 12



CALL INFORMATION LOGGING, CL

4.7

4.7.1

4.7.1.1

4.7.1.2

4.7.2

4.7.2.1

4.8

4.8.1

4.8.1.1

13

POST PROCESSING OF DATA FROM LOCALLY STORED
FILES

This section applies when the central storage has been lost and you want to update
from a local copy.

SET FILTER CRITERIA AND TRANSFER CIL DATA

The CIL output data can be post-processed internally in the MX-ONE Service Node by
defining filter criteria and transferring the CIL data from one output format to another.
The transfer types can be file to SQL database, SQL database to file, or file to file.

Prerequisites

. CIL data has been logged and stored in the specified source format.

. The destination output connection must have been defined.

Execution

. Depending of source and destination format, enter one of the following
commands:

- Key the command callinfo_file_to_sql to set filtering criteria and transfer
(possibly filtered) CIL data from file to SQL database .

- Key the command callinfo_sql_to_file to set filtering criteria and transfer
(possibly filtered) CIL data from SQL database to file .

- Key the command callinfo_file_to_file to set filtering criteria and transfer
(possibly filtered) CIL data from file to file .

PRINT THE FILTERING SETTINGS

Execution

Key the command callinfo_status_print to see the current filtering settings .

TEST THE CIL OUTPUT FOR TCP/IP
PRINT THE RECEIVED CIL DATA ON A TCP PORT
To verify that the CIL output has been correctly set up, there is a function which simu-

lates a TCP/IP server.

Prerequisites

The CIL output function shall be initiated and active.

20/154 31-ANF 901 14 Uen G2 2018-10-08



EXECUTION

4.8.1.2 Execution

Key the command callinfo_tcp_print to start listening to a specified TCP port, and print
the received data.

20/154 31-ANF 901 14 Uen G2 2018-10-08 14



CALL INFORMATION LOGGING, CL

5

5.1

5.1.1

15

OUTPUT FORMATS

DEFINE AN OUTPUT FORMAT

Up to 10 outputs can be defined per LIM, and each can have its own format. With flex-
ible formats, it is possible to omit the option of logging abandoned and failed calls. The
steps to change an existing format are the same as for defining a format for the first
time.

FORMAT STRINGS, GENERAL FORMAT

For a thorough description, see the interworking description for Call Information
Logging, Quality Logging, section Using a Script as Both Formatter and Filter.

The General format has no predefined format string. Instead all formatting of the
General format is build by the user using the -format option. The predefined formats
(FP15, MDFP15, ASB501 and ASBUMDFP15) have a predefined format string. For the
predefined formats the argument to the -format option is intelligently merged with the
predefined format string.

With a condition string to the -format option the General format and the predefined
formats (FP15, MDFP15, ASB501, and ASBUMDFP15) can be filtered to store only
explicitly defined data. The format strings can contain conditions, written inside square
brackets, that limit what is logged. For example, only log calls that last more than 10
seconds would give: -format “[duration >= 10]”.

With the [head] condition is stated what will be recorded only the first time. In the
previous example, 'duration’ is a predefined variable. For a list of these variables, see
the interworking description for Call Information Logging, on Field Names in the section
Using a Script as Both Formatter and Filter.

What data to log can be stated with predefined variables, if they are to be left or right
justified, and the min and max number of digits. These terms are written within curly
braces. If we, for calls with valid account codes, would want to log the dialed number,
right justified, with 15 digits, and access code1 left justified with 3 digits, this could be
written as -format “[accountcodevalid == 1] : {dialednumber R 15 15} {access-
Code1 L 3 3}”. The variables are case insensitive. Different statements within the
format string are separated by semicolons.

As seen in the interworking description there are a number of substitutions available,
like {newline} to output a new line in the log.

If {exit} is specified after a condition and the condition is true, processing of the call is
abandoned at {exit}. That means that all output specified before {exit} will be output (if
the conditions are true), but what is specified after {exit} will be ignored. After
"executing" an {exit} further statements will not be processed for that call.

Note: The callinfo_output_set command should preferably be written as a command
file, which is “sourced” to run from an mdsh shell. When entered as a sourced
file, line continuation through the backslash character, “\”, is supported. It also
works to put the command on one line, when sourced in mdsh.

In the following examples, where the backslash character is shown, the use of sourced
files are assumed.

20/154 31-ANF 901 14 Uen G2 2018-10-08



OuTPUT FORMATS

5.1.2 EXAMPLE 1
Create an output format for the following conditions:

”A connected to B”, "A connected to B but dialed C”, "A connected to B but dialed C
duration D”

The dialed number is only recorded if it is different from the connected number. The
duration is only recorded if both the call is longer than 10 seconds and the dialed
number is different from the connected one.

callinfo_output_set -type file -subtype general \

-dbname /var/log/smdr/ex_2 -output 1 -lim all \

-format “{callingNumber L 2 10} connected to {connectedNumber L 2 10} ; \
[dialedNumber != connectedNumber] : but dialed {dialedNumber L 2 10} ; \
[dialedNumber != connectedNumber] [duration > 10] : \

duration {duration L 2 20} ; {newline} ; “

callinfo_status_set -state on -lim all -output 1

As seen in the above example arbitrary text (“connected to “, “but dialed “, and “duration
“) can be entered in the format string to enhance the readability of the logged data.

An alternative implementation would be to use {exit} to terminate recordings with wrong
format.

callinfo_output_set -type file -subtype general \

-dbname /var/log/smdr/ex_2 -output 1 -lim all \

-format “{callingNumber L 2 10} connected to {connectedNumber L 2 10} ; \
[dialedNumber ==connectedNumber] : {newline} {exit} ; \

but dialed {dialedNumber L 2 10} ; \

[duration <= 10] : {newline} {exit} ; duration {duration L 2 20} ; {newline} ;"

callinfo_status_set -state on -lim all -output 1

5.1.3 EXAMPLE 2

This example shows a UK logging format with output over TCP to the server at
192.168.0.1 on port 9876.

callinfo_output_set -lim all -output 0 -type tcp -subtype general \

-server 192.168.0.1 -port 9876 -local -utc -eol CRNL \

-format “ {stoptime md110date L 4 4} {stoptime md110time L 4 4} \

{stoptime second OR 2 2} {duration md110duration L 5 5} ; \

[taxpulses != 0] {taxpulses R 4 4} ; [taxpulses == 0] : ; \
{conditionCodeUserDefined L 3 3} {accesscode1 R 5 5} {accesscode2 R 5 5} \
{dialednumber R 20 20} {callingnumber L 20 20} {accountcode L 15 15} \
{cilcode L 6 6} {queueTimeCounter OR 2 2} {ringTimeCounter OR 2 2} \
{ogTrnkld R 9 9} {incTrnkld R 9 9} {connectedNumber R 16 16} {newline} ;

20/154 31-ANF 901 14 Uen G2 2018-10-08 16



CALL INFORMATION LOGGING, CL

5.2

5.2.1

522

523

17

callinfo_status_set -state on -output 0 -lim all

FIXED OUTPUT FORMAT

The fixed output format is a predefined output format Fthat cannot be altered. The fixed
output formats can only be used for CIL data, not for VolP QoS logging. For further
information, see the command description for CALL INFORMATION LOGGING, CL.

EXECUTION

. Key the command callinfo_output_set -format to choose a fixed output format.

. Key the command callinfo_status_print to check the result .

EXAMPLE 1

The customer wants to do call logging in the MDFP15 format to the file
Ivar/log/smdr/mdfp15 but would like to log only external calls (with accessCode1 == 00)
that are at least 10 seconds long. Time data shall be presented in local time.

callinfo_output_set -type file -subtype mdfp15 -dbname \
Ivar/log/smdr/mdfp15 -output 1 -lim all -localtime \
-format “[duration < 10] :{exit}; [accessCode1 != 00] {exit}; “

callinfo_status_set -state on -lim all -output 1

EXAMPLE 2

The customer wants to do call logging in the ASB501 format to the file
/var/log/smdr/asb501, but to reduce the amount of data, discard calls to and from
numbers in the range from 5900 to 5999. Time data shall be presented in local time.
Output 2 will be used.

callinfo_output_set -type file -subtype asb501 \

-dbname /var/log/smdr/asb501 -output 2 -lim all -localtime \
-format “[callingNumber begins 59] {exit}; \

[dialedNumber begins 59] :{exit};”

callinfo_status_set -state on -lim all -output 2

20/154 31-ANF 901 14 Uen G2 2018-10-08



OuTPUT FORMATS

524 USE THE GENERAL FORMAT, TO CHANGE PREDEFINED
FORMATS

To change a format that is almost right, create a new general format, using the existing
format as a template.

. Use the command callinfo_format_print -subtype to print the existing format.
Perform the needed modifications.

. Open the new format string in an output file to test the change. Hint: perform 'tail
-f' on the file, to output as it is written to the file.

Note: A delay may be noticed if the file system caches the data prior to output to file.
Try making more than one call to flush the cache or wait for the cache flush
every second minute.

An existing file from a local fixed format copy, XML, comma separated, or SQL, can
also be used. One of the commands callinfo_file_to_file , or callinfo_sql to_file shall
be used. The resulting file can be examined and the format string can be adjusted
without making calls. This method is faster if complicated calls have to be made to
confirm the format changes.

To test the format, enter the following command (on one line).
>callinfo_file_to_file -insubtype xml

-infilename /var/smdr/data.1.xml -outsubtype asb501
-outfilename /var/opt/eri_sn/call_logging/conv -format "xxx"

Where "xxx" is the format to be tested

5.2.5 EXAMPLE 2
Create an output like FP15, but add the 3 letter condition code last on each line. Ifitis
a normal internal call, though, write “normal internal” instead of the condition code.

Get the format string for FP15. Do a copy and paste from the output of the command
callinfo_format_print -subtype fp15.

You will get the format string (on one line):

” [head] : {currentTime month OR 2 2} {currentTime day OR 2 2} {newline} ; [isMobileL-
ogging 1= 1] :

{stoptime md110time L 4 4} {duration md110durationDecMinute L 5 5} {condition-
codeilcharacter L 2 2}

{accesscode1 L 3 3} {accesscode2 L 3 3} {dialednumber R 15 15}

{callingnumber L 4 4} ; [isMobileLogging != 1] [accountcodevalid != 1] : {cilCode R 15
15} {newline} ;
[isMobileLogging != 1] [accountcodevalid == 1] : {accountcode R 15 15} {newline}; “

Writing “normal internal” can be done in two ways.The first way is to globally redefine
the user defined condition code string “conditionCodeUserDefined”. This is the same
as the 3 letter condition code, unless already changed. To do this use the following
command:

callinfo_condcode_set -code 8 -string “normal internal”

20/154 31-ANF 901 14 Uen G2 2018-10-08 18



CALL INFORMATION LOGGING, CL

19

Then use the callinfo_output_set command with the format string as above, where the
user defined condition code is added, and activate the logging with the callinfo_sta-
tus_set command.

callinfo_output_set -lim all -output 1 -type file -subtype general -dbname \
Ivar/log/smdr/ex_3 -format “ [head] : {currentTime month OR 2 2} \
{currentTime day OR 2 2} {newline} ; [isMobileLogging != 1] : \

{stoptime md110time L 4 4} {duration md110durationDecMinute L 5 5} \
{conditioncode1character L 2 2} {accesscode1 L 3 3} {accesscode2 L 3 3} \
{dialednumber R 15 15} {callingnumber L 4 4} ;\

[isMobileLogging != 1] [accountcodevalid != 1] : {cilCode R 15 15} {newline} ; \
[isMobileLogging != 1][accountcodevalid == 1] : \

{accountcode R 15 15} {conditionCodeUserDefined L 1 20} {newline}; *

callinfo_status_set -state on -lim all -output 1

If the “conditionCodeUserDefined” is used for something else the format string can be
written using a test on the condition code, where the “normal internal” text is written if
the condition is true.

callinfo_output_set -lim all -output 1 -type file -subtype general -dbname \
Ivar/log/smdr/ex_3 -format “ [head] : {currentTime month OR 2 2} \
{currentTime day OR 2 2} {newline} ; [isMobileLogging != 1] : \

{stoptime md110time L 4 4} {duration md110durationDecMinute L 5 5} \
{conditioncode1character L 2 2} {accesscode1 L 3 3} {accesscode2 L 3 3} \
{dialednumber R 15 15} {callingnumber L 4 4} ;\

[isMobileLogging != 1] [accountcodevalid != 1] : {cilCode R 15 15} {newline} ;\
[isMobileLogging != 1] [accountcodevalid == 1] : {accountcode R 15 15} ; \
[conditionCode != 8] : {conditionCode3Character L 3 3} ; \

[conditionCode == 8] : normal internal ; {newline} ; “

callinfo_status_set -state on -lim all -output 1

20/154 31-ANF 901 14 Uen G2 2018-10-08



TERMINATION

6 TERMINATION

If exchange data has been altered and no more commands are to be entered, a dump

to backup media must be performed, see operational directions for ADMINISTRATOR
USERS GUIDE.

20/154 31-ANF 901 14 Uen G2 2018-10-08 20



CALL INFORMATION LOGGING, CL

7

21

FREQUENTLY ASKED QUESTIONS

Below are the answers to the most frequently asked questions about call information
logging.

How many storage files can a system have?

Each LIM can store up to 10 outputs (streams), where each output is indepen-
dent. So basically the system can have 10 different outputs per LIM, each with a
different format (totally 1240 outputs).

Can several formats be active simultaneously?

Yes, all output streams can have its own format. The same data can basically be
printed in 10 different ways per LIM.

Where are the files normally stored?
The path to where the files are stored is /var/opt/eri_sn/call_logging.
Is it possible to get only one output for the whole system?

Each LIM can forward its input to other LIMs. Then the receiving LIM can be the
connection point to the central billing system.

Why does the commaseparated look so strange?

The intension is to create a format that is easy to read, by a computer, where
each column carries specific data. Each call is one row and each data in the
output uses one column. If a file is imported into Microsoft Excel, the initial
comment can be used to identify the data fields as the first rows can be fixed to
be the heading.

Can an individual file be stored in a central place?

Yes, but this is not recommended because the post processing gets more
complex with more files and more commands are needed. Enter the following
commands to create one set of files per LIM in the central storage:

>callinfo_output_set -type file -subtype xml -dbname /var/opt/eri_sn/call_log-
ging/lodfile -lim all -output 0 -local

>callinfo_status_set -output O -lim 1 -state on

>callinfo_output_set -type asyncfile -subtype fp15 -dbname /call_log-
ging/central_1 -server storage.mynet.com:0 -lim 1-output 1 -format "utc"

>callinfo_status_set -output 1 -lim 1 -state on

>callinfo_output_set -type asyncfile -subtype fp15 -dbname /call_log-
ging/central_2 -server storage.mynet.com:0 -lim 2 -output 1 -format "utc"

>callinfo_status_set -output 1 -lim 2-state on
Why are the files deleted after 6 days? Can data be stored more then 6 days?

The setup is to prevent the files to grow indefinitely. This way the directory size
is controlled and no human intervention is (normally) needed to prevent the disks
to be filled up. To store the data more than 6 days, there is a template file that
can be started from the cron service each day, under
/usr/etc/opt/eri_sn/templates/callinfo_copy_script.sh.

Can more than one central storage be set up?

Yes, all outputs can be setup as central storage, but it is recommended to store
at least one local copy.

20/154 31-ANF 901 14 Uen G2 2018-10-08



FREQUENTLY ASKED QUESTIONS

. How can the data, sent on TCP to the central storage, be tested?

The command callinfo_tcp_print is creating a passive server that will listen to
the incoming datastream and present it on the screen. To see the output, make
a copy of the output data and paste it directly into the server where the program
is running. For example, enter command:

>callinfo_tcp_print -server localhost -port 1023
. How is a V24 (rs232) output set up?

A 9 pin - 25pin null modem shall be used, if the system is connected to a 25 pin
dumb terminal for testing. The following example is using bitrate = 9600, flow
control = none, bits = 8, stopbit = 1, no parity, control signal = DTR/RTS. For
example, enter commands:

>callinfo_output_set -output 1 -type v24 -subtype asb501 -lim all -dbname
/dev/ttySO0 -bitrate 9600 -parity no -flowcontrol hw -databits 8 -eol CRNL -record
call -format local

>callinfo_status_set -state on -lim all -output 1
. How is the data sent to a line printer (centronix)?
The data is sent to a line printer by entering commands:

>callinfo_output_set -output 1 -type v24 -subtype asb501 -lim all -dbname
/dev/Ip0 -noinit -eol CRNL -record call -format local

>callinfo_status_set -state on -lim all -output 1
. How is the naming of the files done?

The file name is built up from the -dbname, supplied on the command line, by
adding a week day number and an extension. The extension is usually .dat or
.xml. The week day extension is 0 for Sunday, 1 for Monday ... and 6 for
Saturday.

For example, enter commands:

>callinfo_output_set -output O -type file -subtype xml -dbname
Ivar/opt/eri_sn/call_logging/foobar -lim all

>callinfo_status_set -lim 1 -output O -state on

If the commands above are entered on a Tuesday, the resulting output file name
would be "var/opt/eri_sn/call_logging/foobar.2.xml".

20/154 31-ANF 901 14 Uen G2 2018-10-08 22



	1 General
	1.1 Glossary and Acronyms

	2 Prerequisites
	3 Procedure
	3.1 General
	3.2 Initiating CIL
	3.3 Removing CIL
	3.4 Logging to File

	4 Execution
	4.1 Configure and Activate the CIL Output Connection
	4.1.1 Configure the Output Connection and Start CIL Output
	4.1.1.1 Execution
	4.1.1.2 Example 1, Basic Call Logging to SQL
	4.1.1.3 Example 2, Basic Call Logging to a central NFS storage


	4.2 Change the Output Criteria
	4.2.1 Prerequisites
	4.2.2 Execution
	4.2.3 Print the Output Criteria
	4.2.3.1 Execution


	4.3 Remove the CIL Output Connection
	4.3.1 Remove the Output Connection
	4.3.1.1 Execution


	4.4 Dialed Number Masking
	4.4.1 Set the Masking of Dialed Numbers in the CIL Output
	4.4.1.1 Execution

	4.4.2 Print the Dialed Number Modification Data
	4.4.2.1 Execution


	4.5 Heartbeat
	4.5.1 Select the Heartbeat Function
	4.5.1.1 Execution


	4.6 Condition Code Change and Print
	4.6.1 Condition Code Change
	4.6.1.1 Execution

	4.6.2 Print Information about Condition Codes
	4.6.2.1 Execution

	4.6.3 Print Information about Output Formats
	4.6.3.1 Execution

	4.6.4 Set Customer-Specific Text Strings for Condition Codes
	4.6.4.1 Execution


	4.7 Post Processing of Data from Locally Stored Files
	4.7.1 Set Filter Criteria and Transfer CIL Data
	4.7.1.1 Prerequisites
	4.7.1.2 Execution

	4.7.2 Print the Filtering Settings
	4.7.2.1 Execution


	4.8 Test the CIL Output for TCP/IP
	4.8.1 Print the Received CIL Data on a TCP Port
	4.8.1.1 Prerequisites
	4.8.1.2 Execution



	5 Output Formats
	5.1 Define an Output Format
	5.1.1 Format Strings, General Format
	5.1.2 Example 1
	5.1.3 Example 2

	5.2 Fixed Output Format
	5.2.1 Execution
	5.2.2 Example 1
	5.2.3 Example 2
	5.2.4 Use the General Format, to Change Predefined Formats
	5.2.5 Example 2
	If the “conditionCodeUserDefined” is used for something else the format string can be written using a test on the condition code, where the “normal internal” text is written if the condition is true.



	6 Termination
	7 Frequently Asked Questions

